
Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 8, 1051-1056

Potential Challenges For Software Engineering Applications And

Practical Solutions

Nguyen Tan Danh

Faculty of IT, FPT University, Vietnam, Email: DanhNT16@fe.edu.vn

Abstract

Practical studies show that, in order for users to use smart devices more, use smart applications more

often for different purposes, applications must meet the requirements of use. their application, must be

easy to use, stable and reliable. The era of information technology development with countless

advancements and economic development. This is the same thing that requires an increasing human

capacity to process and store information based on two factors: efficiency and accuracy. However, in

the process of using smart applications, there are many problems that have been encountered related to

the quality of the software. In the article, some challenges facing Software Engineering industry are

mentioned through comparison of data and some solutions mentioned are most practical to solve the

problem.

Keywords: Software engineering, software, applications, challenges.

1. Introduction

Recent years have seen the rapid growth of

malware both in number and type. Today, this

number has increased to more than 800 million

malicious code samples by the end of 2018. In

the face of the rapid development and heavy

destruction of malware, there have been many

studies on the world. methods for detecting and

removing malware, but generally these studies

revolve around two main methods of anomaly

or anomaly and signature-based detection. The

concept of data mining for malware detection is

mentioned. There are three different static

properties for malware classification: Portable

executable, strings, and byte sequences [1]. A

method of visualizing and classifying malware

using image processing techniques, this method

visualizes malicious files as grayscale images in

question. Use K nearest neighbor with

Euclidean distance for malware classification. It

has been found that the classification using this

method is faster, more scalable and comparable

to dynamic analysis in terms of accuracy [2]. A

framework for automatic malware classification

based on the structural information of the

malware was also detected [3]. The most

important problem to properly detect malicious

code is to have a really effective feature

extraction method, a new malware detection

method using n-grams byte signature, Abou-

Assaleh's experiments almost absolute accuracy

has been achieved [2].

In recent years, Vietnam's software industry has

made remarkable leaps and bounds. In 2020, the

revenue of the software and digital content

industry will reach over 6 billion USD, 2 times

higher than the revenue in 2015 (3 billion USD).

In just the first 6 months of 2022, the ICT

industry has brought a total revenue of more

than 72 billion USD. But the bigger and higher

goal is to affirm the position of Vietnam's

software technology on the world IT map.

Software does not require complex machines to

develop, it can be created on personal

computers that are accessible to most people in

society today [4]. This creates the illusion that

anyone who just needs to learn some simple

programming languages can develop software.

At the same time, the invisibility of software

makes users tend to invest and pay attention to

hardware devices rather than to the software

itself. Sometimes, some modules are created by

experts in the field themselves, rather than

software engineers, especially for applications

in science[2].

Looking back, we can see that the lack of

expertise or the lack of stages in the software

development process caused software errors.

This will have serious consequences or if the

software is to be repaired there will be a fraction

of the costs incurred [3]. In recent years, the

development of technology has led to more and

more automation in stages such as testing,

deployment, and management of new software,

mailto:DanhNT16@fe.edu.vn

Nguyen Tan Danh 1052

while allowing researchers and practitioners to

identify new approaches to creating and

operating software and services. On the other

hand, software and interactive devices

sometimes change due to various reasons, such

as interface and implementation errors,

changing requirements, etc. To build and

manage software efficiently, we need to

strengthen the management methods, improve

the quality of software and applications [5].

2. Explosion of apps and providers

Digital transformation has seen us witness an

explosion of these applications, software and

application vendors for businesses. Think about

how many apps and programs you're using to

work in a day [4]. The number of marketing

tools has increased extremely fast in the past

few years. Any part of the business now relies

on certain types of work-related applications.

According to Netskope, the average business

has more than 800 cloud applications.

Most cloud-based software is available for

anyone to use, free or paid. With the growth rate

of the marketing tools above, you can imagine

the number of applications must be a huge

number. The ease of access, coupled with the

variety of new tools, creates a renewed need for

users, even though the chances are high that the

tools they need already exist.

Using too many new apps or apps every week

poses a serious threat to IT department

protocols and business security. Dealing with

the sprawl of applications becomes a real

headache if the business is not prepared for this

[6].

3. Current status of software projects

In which, the export of hardware and electronics

continues to be the mainstay with export

turnover reaching 57 billion USD, up 16.4%

compared to the first 6 months of 2021. In

which, computer exports reached 29.1 billion

USD increased by 21.8% and phone exports

reached 27.9 billion USD, up 11.2% over the

same period [7].

Comments from other independent entities such

as HSBC also show that exports are the main

driving force of the ICT industry. Accordingly,

Vietnam is currently the world's No. 2

smartphone producer, accounting for 13% of

the total number of smartphones being sold

worldwide, just behind China with 50%. Not

only that, Vietnam is also one of the countries

that provide microprocessors for assembled

electronic devices around the world [5].

Current software development trends are

customer-centric, the goal is to provide

customers with a great experience. In recent

years, the software industry has developed

strongly in the following areas: cloud

computing; big data analysis and processing,

intelligent application development, multi-

sensory, multi-channel experience. Along with

design and development trends, software

projects have been developing new software

engineering approaches, transitioning from full

applications to applications developed based on

the application of software engineering.

microservices model and the need for new

approaches that facilitate service/application

composition. The above-oriented development

has encountered technical difficulties in

implementing software projects as follows.

The transition from application development

approach to application component approach is

considered very important. In this direction,

supporting software reuse through software

development based on microservices combined

with software component frameworks must be

implemented. In fact, the transition from all-

code-heavy applications to smaller, self-

contained services has already been made [3].

Applications with a microservices architecture

consist of a set of independently deployable

services. Such services can be combined to

create a service chain graph and support

advanced functions. The implemented

microservices must be validated against a

uniform representation model regarding their

interface characteristics and interfaces.

Therefore, such services must be software

developed by design, by applying reusable

design patterns, separation of concerns and

high-level modeling, supporting the exploration

and understand complex software systems and

refactor them accordingly [6].

Within software design challenges also include

challenges for the development of systems that

are self-adapting, responsive, fault-tolerant,

self-healing, developed software components,

etc. development must respond by design to

changes in the operating environment. During

1053 Journal of Positive School Psychology

software design, it is necessary to take into

account the variability of highly distributed

applications in heterogeneous environments [5].

Among the middleware deployment and

orchestration challenges are deploying

applications on a programmable infrastructure

in a way that is optimal in terms of software

performance as well as service provider policies.

high. Therefore, the software delivered must be

modeled in a way that provides flexibility to the

user (or automated deployment tools) to deploy

it optimally. This mostly applies to applications

with concepts. Furthermore, in this direction,

data location, data volatility, and serious timing

issues drive the definition of a set of

requirements that must be met. It's critical to be

able to manage ready-to-run workloads

designed for physical, virtual, and cloud

environments using single templates for all

public, private cloud environments or mixture.

From the challenges mentioned above in this

category, the most common challenges are the

need to provide cloud-based tools and services

for rapid software prototyping and the need to

manage software complexity. large software

and data-intensive systems [4].

Finally, regarding service/application lifecycle

management challenges, the focus is on the

adoption of model-driven development

techniques.

Managing development complexity and risk in

both the design and runtime phases is

considered critical, to increase the quality of the

software, to reduce the time. From the

challenges mentioned above in this category,

the most common challenges are the need to

provide cloud-based tools and services for rapid

software prototyping and the need to manage

software complexity. large software and data-

intensive systems [5].

4. Hidden challenges of software

engineering

New challenges emerge as technological

advancements and new concepts emerge, while

existing challenges also involve new turning

points and subsequent new research and

transformation activities that are needed to

master act and solve problems effectively and

efficiently. Some of the future challenges of

Software Engineering can be mentioned as

follows.

Software process is an area of study that has

been thoroughly explored, but today there are a

number of new advances in technology and

practice that cause significant changes in this

aspect. Software is measured in terms of

usability, reliability, and scalability. New

capabilities to easily collect user feedback and

monitoring information enable fully informed

software development while shorter

development cycles require new software

production methods really effectively allows for

controlled management of such short

development cycles. In addition, efficient use of

resources and support for architecture-level

analysis, optimization of deployment decisions,

and automatic orchestration and orchestration

of applications/services and application of

methods infrastructure as a code approach to

eliminate the need to configure and manage

infrastructures to be programmable, with a

focus on using them from middleware.

Currently, software development products are

developed on application models of virtual

reality systems and networks of physical

devices linked over the internet. The

development of services, applications has a lot

to do with the ability to adapt to real-time

changes, thus allowing for different application

contexts. Key challenges presented by IoT-

enabled CPS include the development of design

models, methods, and tools for IoT/CPS-

enabled applications that go beyond studying

formal methods for creating abstract concepts

and forms to construct and reason about diverse

systems of components. Furthermore, the needs

brought about by CPS with new approaches to

software adaptability, scalability, and

maintainability are sometimes not taken into

account when designing in large-scale open

CPS environments [3].

As suggested above and bearing in mind the

different application contexts, further research

is also needed in developing design patterns for

the systems approach. New patterns at the

architecture level describe the

obligations/constraints that must be fulfilled by

the system on which the software is running [5].

And to validate and standardize them are

necessary and methods of applying them to the

ever-changing context environment. Therefore,

issues such as frameworks of reference, design

architecture and interoperability, modeling

Nguyen Tan Danh 1054

languages, tool integration and simulation and

analysis, etc. must be dealt with.

The rapid growth over the years of agile

delivery methods, as well as the need to reduce

software development time, however having to

take a research approach can increase system

quality, reduce service recovery wait times, and

develop agile methodologies for testing quality

through the process of software testing [6].

Another core aspect that has a direct impact on

any software operation is requirements

engineering. New devices, services, and even

individuals become part of the software-enabled

ecosystem. Flexibility, continuous evolution,

and interconnection are at odds with current

engineering requirements output, as current

approaches sometimes do not take into account

additional in-process functionality and request

is undefined. A radically different approach is

required to capture new behaviors from systems

and users. New technologies and trends are

shedding light on potential research topics such

as multi-channel big data analytics to collect

requests from large-scale webs (such as

connected smart city infrastructures)

combinations of people, machines, and

generally system characteristics and behaviors),

new methods for interacting with users that are

geared towards directly extracting requirements,

indirect requirements corresponding to The

indirect extraction model exploits the

contextual perception of individuals

independently of the use of a particular software

[7].

Particular attention must be paid to privacy and

security in complex distributed systems that in

many cases have to handle large volumes of

data in a distributed manner [2]. Particular

emphasis should be placed on the topic of

security and privacy by designing software

engineering approaches that contribute to the

creation of software products that can operate in

a multi-IT infrastructure environment with

increased security features [9].

Studying software engineering challenges in

this direction includes new tools that use

machine learning and data mining techniques to

reveal hidden knowledge aspects and extract

information from exploiting knowledge that

humans cannot dig up, but needs human

attention and affection to improve software

quality. Research the evolution/decomposition

of application frameworks, analyze trends,

preferences and user behavior with systems to

better understand user needs, tools and methods

to identify performance and feature

improvement opportunities, identify root causes

of errors and system crashes based on log files

or rapid updates coming from systems and

disparate complex distributed infrastructures,

insights collected at runtime about symptoms

and context changes that trigger adaptive

actions, and perform predictive and description

to proactively plan and prepare adaptation

actions [4].

In summary, the challenges of Software

Engineering include both developing

methodology and developing supporting tools

to detect and deal with inconsistencies and gaps

in requirements specifications, knowledge and

skills [1]. Furthermore, software production

processes also include organizational

challenges that must be met with an

interdisciplinary approach to creating and

managing communities of code contributors,

reviewers, testing, first-level users,... and

comprehensive development and

communication methods that combine existing

tools under a common set of formalized,

methodological sets [3].

5. Suggestions

As can be clearly seen, it is very difficult to

optimize these properties simultaneously.

Attributes may conflict with each other, such as

efficiency and ease of use, maintainability. The

relationship between improvement cost and

performance for each attribute is not linear.

Many times, a small improvement in any

attribute can be very expensive [9].

Another difficulty of software development is

that it is difficult to quantify the properties of

the software. We lack software quality metrics

and standards. The issue of price must be taken

into account when building a software. We will

be able to build a software no matter how

complicated it is if there are no time and cost

constraints. It is important that we build good

software at a reasonable price and on a

predetermined schedule [3].

We can see that the top difficulty of software

development is due to the nature that software

is a logical system, not a physical system. It

1055 Journal of Positive School Psychology

therefore has characteristics that are

significantly different from those of the

hardware. Here are the three main factors that

create complexity in software development, use,

and maintenance.

The first is that the software is not made in the

classical sense. Software is also designed and

developed like hardware, but it is not predefined.

It is only when the development is done that

people have a specific product and understand

if it works or not. That is, in the intermediate

steps, it is very difficult for us to control the

quality of the software.

The cost of hardware is mainly driven by the

cost of raw materials and is relatively easy to

control. Meanwhile, software costs mainly

focus on labor costs. The software development

process depends on people (knowledge, ability

to apply, experience and management) and is

developed under diverse and non-diversified

(technical, social) environmental conditions.

stop changing. Therefore, it is difficult for us to

estimate the cost and effectiveness of the

software.

Second, software does not degrade but degrades

over time. Software doesn't respond to

environmental influences that cause hardware

to age, but it also degrades over time. In fact,

software goes through life needing to be

changed (maintained) to meet the ever-

changing needs of the organization that uses it.

Every time a change is made, there will be a

number of new defects that inevitably make the

number of potential bugs in the software

increase. Gradually, software degraded due to

the increasing failure rate to the point of causing

unacceptable damage [4].

Software maintenance is much more complex

and different in nature from hardware

maintenance due to the complexity of the

software system and the unavailability of

replacement parts for the defective part. We do

not replace the defective part with the existing

one, but actually create a new module.

Therefore, usually only the software

manufacturer can maintain (repair) the failure.

It is difficult to estimate the cost of software

maintenance [7].

Third, most software is built from scratch,

rarely assembled from pre-existing components.

The software environment (including hardware,

background software, people, and organizations)

is unpredictable and changes frequently.

These factors lead to high software costs and it

is difficult to secure a schedule for software

development.

6. Conclusion

In the article, an overview with the current and

future challenges of software engineering has

been mentioned. Software systems reside in a

complex and hyper-connected ecological

system. Society is increasingly dependent on

software in many areas, such as entertainment,

education, politics, industrial and civil

infrastructure, economic and business

initiatives, as well as work and other individual

activities in many other fields. All of these areas

have become closely intertwined with software

systems and applications. Thus, software

development is a field that requires the support,

improvement and research of new methods and

support tools applied in the software

development process, along with the complete

development of software development. The

knowledge and skills of the human factor will

bring expectations to make the software

development process easy, ensuring the

required criteria for quality and security and

usability of the software application.

References

[1] Lim, S. L., Bentley, P. J., Kanakam, N.,

Ishikawa, F., & Honiden, S. (2014).

Investigating country differences in mobile

app user behavior and challenges for

software engineering. IEEE Transactions

on Software Engineering, 41(1), 40-64.

[2] Casale, G., Chesta, C., Deussen, P., Di Nitto,

E., Gouvas, P., Koussouris, S., ... & Zhao,

Z. (2016). Current and future challenges of

software engineering for services and

applications. Procedia computer

science, 97, 34-42.

[3] Robillard, M., Walker, R., & Zimmermann,

T. (2009). Recommendation systems for

software engineering. IEEE software, 27(4),

80-86.

[4] Vogel-Heuser, B., Diedrich, C., Fay, A.,

Jeschke, S., Kowalewski, S., &

Wollschlaeger, M. (2014). Challenges for

software engineering in

automation. Journal of Software

Engineering and Applications, 2014.

Nguyen Tan Danh 1056

[5] Crnkovic, I. (2001). Component‐based

software engineering—new challenges in

software development. Software

Focus, 2(4), 127-133.

[6] Ghezzi, C., & Mandrioli, D. (2005, May).

The challenges of software engineering

education. In International Conference on

Software Engineering (pp. 115-127).

Springer, Berlin, Heidelberg.

[7] Lim, S. L., Bentley, P. J., Kanakam, N.,

Ishikawa, F., & Honiden, S. (2014).

Investigating country differences in mobile

app user behavior and challenges for

software engineering. IEEE Transactions

on Software Engineering, 41(1), 40-64.

[8] Crnković, I. (2003). Component-based

software engineering-new challenges in

software development. Journal of

computing and information

technology, 11(3), 151-161.

[9] Zambonelli, F., & Omicini, A. (2004).

Challenges and research directions in

agent-oriented software

engineering. Autonomous agents and

multi-agent systems, 9(3), 253-283.

