Journal of Positive School Psychology
2022, Vol. 6, No. 5, 3274-3288

http://journalppw.com

Modeling Lifetime Data With Weibull-Exponentiated
Exponential Distribution (W-Ee)

Ayat Khaled Sagheer!, Kareema Abed AL-Kadim?

12Mathematics Department, College of Education for pure Sciences, University of Babylon/Iraq
ayat.sghuer@student.uobabylon.equ.iq , Kareema.kadim@yahoo.com

Abstract

In this study we obtained a new four- parameters continuous distribution called the Weibull-Exponentiated
Exponential distribution (W — EE) for modeling lifetime data that created in a new way by using two life
distributions , the results show that the proposed generalization performs better than the other known extensions

of the Weibull distribution considered for the study.
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Introduction :

In a statistics analysis and reliability, the family of
distributions such as the exponential distribution,
Weibull distribution, normal distribution, and
gamma distribution has proven to be of great
importance in the data modeling of life. In reliability
, the family of Weibull distributions of great
importance in different models proved monotonous
failure rates. Statistically , This family contains
distributions that can represent data characterized by
increasing, decreasing, and exponential failure rates.
In real practice, many unexpected data also appear
that weaken the proper representation using the
failure models of this and other families in the field
of reliability . In (1993) Mudholkar and Srivastava
introduced The Exponentiated Weibull family [1].
Mudholkar et al. They provided applications of the
Exponentiated Weibull distribution(EW) in
reliability In (1995).In our study of this research, we

F(X;a,b) = [1—e—axb] ,x>0,a>0,b>0

presented a new distribution in a new way by using
two life distributions, namely the Weibull
distribution and the exponential distribution . Our
goal in generalization is to create flexible
distributions that fit most life data.

Modeling Lifetime data with Woeibull-
Exponentiated Exponential distribution (W —
EE) .

We studied the 4-parameters Weibull -
Exponentiated  Exponential  distribution W —
EE (a,b, o, A, a, b) distribution .

The CDF and PDF of (W — EE) Distribution.

We can find the Cdf and Pdf of (W —EE)
distribution by using the Cdf of the Weibull
distribution that given by :

1)
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And the cdf of the (EE) distribution that given by :
FX;ao)=[1—e ™, x>0,a>0,A>0 (2)
as the follows :

We multiply (xb) in equation (1) by equation (2) lets get cdf of (W — EE) distribution as the following equation

F(X;abad) =1—e a1 v 5 0a>01>0a>0b>0 (3)

And the pdf congruous to equation (3) is :

f(X; a,b, a, 1) = ae~ax"[1—e™™ [xPode™®X[1 — e7 A1 4 bxP1[1 — e" ]|,

x>0, a,Aab>0
4
f(X;a,b,a,A) = ae~ax [1-e™ [[xb[l — e XM [aA[1 — e” ] tem X + bx‘l]]
x>0, a,Aab>0
®)
—ax oA b
f(X;a,b, @) = axPeax’1=e™ I 1 _ e_ax]x[ o _]
-1 X
x>0, a,Aa,b>0
(6)
Where b and A are shape parameters and aand a are  That is
scale parameters. 1.f(X;a,b,a,A) =0
o In (EE) distribution x € [0,00)then in W-EE
Now we prove it is pdf distribution x € [0, o)

When x — 0, then f(X; o,A,a,b) = 0 and as x - oo,

1. fX;a,b,a,2) 2 0 then f(x;a,A,a,b) =

2. [, faba)dx=1
~ f(x;a,A,a,b) =0

2.7 f(Xa,b,a,}) =
— fO°° ae—axb[l—e‘“x]x [XbOO\[l _ e—ax])\—le—ocx + bXb_l[l _ e—(xx]A]
(7

_ [e_axb[l_e—ax]x] |oo _1

(8)

The plots of the cumulative distribution function f(X; a, b, o, 1) are given by the following figures
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) a=06 The limit of the pdf is given as follows :
/’a’.: ----------------------- .
0.98 0T T il lim f(X; a, A, a,b)
0.8f 7 e N x=0
s S T . —axP[1—e—aX]A
g L ,,/ | = alim [e-ax [1-e™%] [[xba)t [1
E° 7 X0
S o06f "t i _ _ _
g i —e (xx A— 1]e otx_l_bxb 1 O(X ]] =0
E 05 .'(I,f B
2 7 ¢
2 04t "l' , (9)
g £ lim f(X; a, A, a,b)
£ 0.3 4 N X—00
3 ~'.II b —ax]A
02f A —===b=1.6,alpha=0.8,lambda=1.2 (| = a lim e~ [1-e7*] [[Xb(x}\ [1
/2 b=0.9,alpha=1.2,lambda=1.5 X—00
0.1r ,' =r=r=p=1.3,alpha=1.7,lambda=1.7 |
0 . . b=1.7,alpha=2,lambda=1.9 —e (XX A-— 1]e ax -|- bXb 1 —O(X ]] = 0
0 1 2 3 4 5 6
X-axis (10)

Figure (1) : The Cdf of W — EE distribution with

the parameters a = 0.6 ; This is the pdf approaches to 0 as x approach to 0 or o

and that is shown Figure (4) .
b=(1.6091317); a=

08,1.2,1.7,2); A= (12,1.5,1.7,1.9). The limit of cdf is given as follows :

. . AP [1_a— XA
Figures (1) indicate that the cdf of the W — EEisnon- M F(X; o, 4,a,b) = lim [1 —ema e ] ] =

decreasing with increasing x and the parameters o, A, 0 (11)
a,b.
lim F(X; a,A,a,b) = lim [1 -
X—00 X—00
0.7 az?ﬁ . . e_axb[1_"’_(“]}L =1
= === h=1.6,alpha=0.8,lambda=1.2
e [\ | b=0.9,alpha=1.2,lambda=1.5 | (12)
: ======h=1.3,alpha=1.7,lambda=1.7
I"'(— b=1.7,alpha=2,lambda=1.9
§ 051 i/  \ i
§ II “. \\
S oal Jam N\ i This is the cdf approaches to 0 as x approach to 0 and
%' 1 o.‘ ,
5 ¥ =, %) ‘\\ oo and the cdf approaches to 1 as x approach to co and
zosr ff AN y that is shown figure (1) .
8 ] “\
£ i 8
& o0zr ’,' .1\) 1 Reliability Analysis
i e
¥ R 1 In this section , we introduce the reliability
. NS (survival) function F(X), Hazard function r(X) and
0 1 2 3 4 5 6

cumulative hazard rate function r(X) and cumulative
hazard rate function H(X) of X~W — EE(«, 2,a,b) .

Figure (2) : The Pdf of W — EE distribution with the Reliability Function
parameters a = 0.6 ;
The reliability (survivor) function of X~W —
b =(1.6,091317); a= EE(a, A, a, b) is defined as follows .
(0.8,1.2,1.7,2); A=(1.2,1.5,1.7,1.9).
F(X;a,A,a,b) =1 —F(X; a7, a,b)
Figures (2), indicate that the W —EE family

generates various shapes such as symmetrical , right -1 - [1 _ e—axb[l—e_ax]}‘] _
skewed and reversed-J . b o

[e—ax [1—e™%X] ] (13)

The Limit of The Pdf and Cdf of W-EE .
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The plots of the reliability function F(x; a, 2, a,b) are
given by the following figures .

1 : o ame : : Figure (3) : The F(X) of W — EE distribution with

ook Ry i oo 0 dpnecs 2 ambaact 5 | the parameters a = 0.5;

o Ny I b=(03,091417); a=

A \Y 1 (32,1.2,1.7,1.1); A= (1.2,15,0.2,1.9).

% 0.5 ‘\.f\:\' 4

| 3 ] Figures (3), indicate that the S(X) of W — EE is
N ] decrease function .
O:O . . s;:'21': ------ ;-.: ...... e Hazard Function:

The hazard function describes the likelihood that a system or an individual will not fail after a given time .
For a continuous distribution with pdf f(X), the hazard function , of Xx~W — EE(a, A, a, b) is known as follows :

f(X; o, A, a,b)

h(X;a,A,a,b) = =————
(X;@,2,2,b) F(X; o, 7, a,b)

B ae—axb[l—e“’“‘Pl [XbOO\[l _ e—ax]l—le—ax + bXb_l[l _ e—ax]}\] (14)

[e-axl1-e~A]

The plots of the hazard function F(X; o, A, a, b) are given by the following figures .

lambda=2
14. I I L |8 L
==m=m==3=0.8,b=0.2,alpha=0.6
"""" a=1.2,b=0.4,alpha=0.8
121 === 3=1.6,b=0.6,alpha=1 i
a=2.3,b=1.8,alpha=1.3

hazard rate function
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Figure (4) : The hazard function of W —EE The Reverse Hazard Function

distribution with the parameters )
The reverse hazard function of X~EE — W(a, A, a, b)

a=(081.21.62.3); b=(0.2,04,0.6,1.8); a= is defined as follows
(0.6,0.8,1,1.3); A= (2).

f(x; o, A, a,b)

r(x,a,2,a,b) = m

B ae—axb[l—e_“x]x [xbal[l _ e—(xx]l—le—ocx + bXb—1[1 _ e—ocx]}\] .
- [1 _ e—axb[l—e“"x]k] (15)

The plots of the reverse hazard function of W — EE are given by the following figures

a=18
35 U L L U L L
====rh=1.2,alpha=0.6,lambda=1.2
«d T b=1.7,alpha=0.9,lambda=1.4 |
| ====x=p=1.9,alpha=1.6,lambda=1.8
— h=2.2,alpha=2,lambda=2
5 25- .
© |
c ]
E o
[0 L -
2 20
°
I
N
O
N
()
)
(O]
>
g

Figure (13) : Reverse ha. fun. of W — EE distribution The Cumulative Ha. Fun.

with the parameters . .
The cumulative hazard function of X~W —

a=18;b=(12171922); a= EE(a, A, a, b) is defined as follows
(0.6,09,1.6,2); A=(1.8,14,1.8,2). H(x; o, A, a,b) = —In[1 — F(x, o, A, a,b)]

= —In [1 — [1 _ e—axb[l—e‘“x]l]]

= —In [e—axb[l_e—ax]x]
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= axP[1 — e ]* (16)

The plots of the cumulative ha. fun. of W — EE are given by the following figures.

a=0.6
14 : : w T :
= === p=1.6,alpha=0.8,lambda=1.2
"""" b=0.9,alpha=1.2,lambda=1.5
127 memen b=1.3,alpha=1.7,lambda=1.7 7
= p=1.7,alpha=2,lambda=1.9
10~
©
S
2 8
[
2
g 6
: =
S
=}
o
4 -
2 -
0
0

Figure (17) : The cumulative hazard of W-EE The Moments and Coefficients of Skewness ,

distribution with the parameters Kurtosis and Variation
a=06;b=(16,091317); a= The moments
(0.8,1.2,1.7,2); A= (1.2,1.5,1.7,1.9). We introduce the r'™ moment about the origin , r™

moment about the mean and coefficient of skewness ,
kurtosis and variation for the W — EE distribution .

[oe]

i, = EX") = f x"f(x) dx
0

= afooo Xre—axb[l—e—om]?l [XbO()\[l _ e—(xx])\—le—ocx + bXb_1[1 _ e—ax]A] dx (17)
By using series expansion of e~ [1=¢"*1* e get
b1 _a—ax]A w (—1DialxPi[1—e—0x]j
e—ax’[1-e” %] =Zj=0( YalxP[1-e™%X] (18)

jt

We substitute (18) in (17) we get
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o (—1)aixPi[1—e~ ]
]l

EXD =af x" T2,

—1)ial © . . 0 . .
— azlpio( ?!)Ja [00\ fo Xr+b(]+1) [1 _ e—ax])\(]+1)—1e—ocxdx +b fo Xr+b(]+1)—1[1 _ e—ocx]h(]+1)dx]

(20)
using binomial series expansion of [1 — e~ ]A0+1)-1 gnd [1 — e~ x]A+1)

[1— e~ @X]A(+D-1 = g0 (10 (Mj +;) - 1) - onx

[1 _ e—ax]l(]'+1) — Z?ﬁ=0(_1)m ()\(]r: 1)) e~ amx (22)

We substitute (20) and (21) in (19) we get

E(X") =

[xPaA[1 — e X]A-De=ax ¢ px(d-D[1 — e~ax]A] gy

(21)

[ o) 1)i+na] F(r+b(+1)+1 oo oo —1)i*+ma) AG I'(r+b(+1)
a0 Y2y 35 0( ) a(MJ+1) D) (r+b(j ) b2j=02m=0( )_! a((“l))u

(an+a)r+b(j+1)+1
The equation (22) is the r' moment of the W — EE distribution .

When r=1thenEX) =pn

B = = aa?\z Z (- )1+na1 <A(] +1)— 1> L +bG+ 1)

4 L n (ocn+(x)2+b(1+1)
]: n=
) o (— )1+mal AG+ D\ +bG + 1)
ta Z; ZO m ) (am)+bG+D
]1=0 m=

(24)

The equation (24) is the Expectation E(X) of the W — EE distribution .

When r = 2 then

(- 1)1+“al AMj+1D) -1\ T@B+b(jG+1)
E(X?) = aaxz Z ( n ) (an + a)3+bG+D)
j=0 n=

o (— 1)J+m AG+ 1\T(2+bG+ 1)
+abZ; ZO < - >W
j=0 m=

(25)
var(X) = E(X?) — E(X)?

(am)r+b(j+1)

(19)
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(- 1)1+“al G+1D-1\TB+b(+1)
= aoO\Z Z ( ) (om + o()3+b(j+1)

j=0 n=
o o (- nﬁmyxg+1)rg+bg+u)
+ abz Z ( m ) (am)2+b(]+1)
1=
- m(—nﬁhlxﬁ+1)—1 F2+b(G+1))
— aa}L]Z: HZ_O—].! < n > (an + o()2+b(j+1)
2
o o (- 11+m AG+ 1D\ +b(+ 1)
b;;o ( m ) (ocm)”b(”l)
(26)

The equation (26) is the variance var(X) of the W — EE distribution .

_ o woo (—DKHHNI kK A +1 — 1\ T(r—k+bj+1)
EX— W' =aodYk=1 220 Xne 0—]! k( G+D ) (ot o) T—KHD+1)

(-pkH+maly AG + 1)\ re- k+b0+1))
ab Y= XjZ0 Xn= o]—Cﬂ( (]m )) S (27)
The equation (27) is the r'" center moment about the mean of the W — EE distribution .

Coefficient of Skewness

It is denoted by CS, and we can know if the distribution under study is symmetric or not , it is expressed by

= (E‘(:\r(i)f when E(X — )3 is center moment about the mean when r = 3 , and /var(x) is the square

root of the variance of distribution .

CS = E(X;m): (28)

(wlvar(X))
LetcS == (29)
By equation (27) , putr = 3 then .
A =EX-m)3
3 o oo .
cao (an + o) (4-k+bD)
3 o o . . .
j! k m (am) B-k+b(+1))
k=1 j=0 m=0

By equation (26)
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B= (\/M) = (Var(X))2

_ aakz z (= 1)]+“a] <k(] +1) - 1) '3 +b(+ .1))

(om + 0()3+b(1+1)

j=0 n=

N abz Z (- )1+ma1 (m; 1)) L2+ bG + 1)

. (ocn + 0()2+b(1+1)
)=

o (—1)a) AG+ 1) — 1\ T2+ b( + 1))
s S oo

(ocn + 0()2+b(1+1)

j=0 n=0
o o . . 2\ 2
N abz Z (—1y*mal MG+ 1)\ T+ Db+ 1))
=) j! m  / (an+ o)t*+bG+D)
R . 4
Coefficient of Kurtosis by CK = EX-w) , when E(X—p)* the center

(var(X))?
It is denoted by CK the coefficient of kurtosis moment about the mean when r =4 | var(X) the
measures the flatness of the top , and it is expressed variance of distribution .

_ EX-m)*
T (var(X))?

(30)

Let CK = % (31)

By equation (27) , put r = 4 then .

c=p-mi= (0 Y S Y CUTIR a4 1) -1y TGk

n (an + o) G=k+bp)

N abii i (—1)kH+m gf ik ct (MJ’ n 1)) (4 —k+Db( + 1))

m (am) @—Kk+bG+1)

By equation (26)

D = (var(X))?
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_ aa?\Z Z (- 1)1+nal (7\(] +1)— 1) r3+b(+ '1))

= (an + 0()3+b(]+1)

Ms

)

j=0

(- 1)1+ma1 <A(J + 1)) '2+b(G+1)

m /(an + )2*bG+1)
0

= 1)1+na1 AG+1)—1\ T2 +b(+ 1)
Z < n )(an +0)2+0G+)

2

8
[

[
%MS

2
i (- 1)1+ma1 <>\(] + 1)> T'(1+b(j+ 1)

m /) (an + o)1+bG+D

Ms

ab

Il
o

j m=0

Coefficient of Variation

. .- . 1/var(X
It is denoted by CV and it is defined by CV = B where /var(X) is the square root of the variance and

E(X) is the expection of distribution .

cv = Y (2.32)

E(X)

LetCV == (2.33)

By equation (26)

E = var(X) = (Var(X))%

- aahz Z (- 1)]+na] (7\(] +1)— 1) r3+b(+ .1))

(an + (x)3+b(]+1)

j=0 n=
o (- 1)1+mal AG+ 1))\ T2 +b(+1)
+ ab; HZO ( m ) (an + «)2+bG+D)
¢ i )1+nal AG+1)—1\ T2 +b+1)
i £ n (an + a)2*bG+1)
-
[o'e] [o'e] 2
(- 1)1+m AG+ D\ TA+Dbj+ 1)
+ ab; HZO ( m ) (an + o)1 +bG+D)

By equation (24)
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F=EX)

Foan ) Yy CO <x(j +1)- 1) r(2 +bG + 1))

n (an + o()2+b(j+1)

s abi i (—1)'i+mai <A(j + 1)) T(1+bG+ 1)

j! m /(an+ a)t*tPG+D

Order statistics

In this section , the pdf of the j™ order statistic and the pdf of the smallest and largest order statistics of W — EE
distribution are derived .

Let x4,X5, ..., X, a radom sample from an W — EE distribution and x;., < X,.5 < -** < Xp.n denote the order
statistics obtained from this sample , then the pdf of x;., is given by:

fin( 0 da ) = G hrm =

f(X, 0,4, a,b)[F(X, o, A, a,b) 711 — F(X, o, A, 2, b) |77

(34)

When f(X,a,A,a,b) is pdf of W — EE distribution given by equation (4) , F(X,a,2,a,b) is cdf of W— EE
distribution given by equation (3).
n!
G- - _
_ e—axb[l_e_"‘X ]7‘]]_1 [1 _ (1 _ e—axb[l_e_"‘X ]7‘)] n-j

[ae—axb[l—e‘“x]x [XbOO\e_“X[l _ e—ax]}\—l + bXb—l[l _ e—ax]x]] [1

(35)
Then the pdf of max. , min., and the med. are explained as:

When j = 1, the pdf of minimum.

(n—-1)!
+ bXb_l[l _ e—ax]l]] [e—axb[l—e“"X ]1] n—-1

fin(X,0,A,a,b) = [ae‘axb[l‘e_ax]}\[Xbake‘o‘x[l — " xx]A-1

(2)

When j = n, then pdf of maximum .
fanX a,A,a,b) = [ae_axb[l_e_axp[xbale_“x[l — e M1 4 bxP1[1 — e_“x]k]] [1

(n—1)!
_ e_axb[l_e—ax ]?\]n_l

(36)

Whenj =m + 1, then pdf of median .

f(m+1):n(X: oA ab) = [ae—axb[l—e—ocxpL [XbOO\e_aX[l _ e—ax]}\—l + bXb_l[l _ e—ax]k]] [1 _

—axP[1-e~ %X ]}‘]m [e—axb[l—e_"‘X ]7‘] n-m-—1 (37)

m!(n—-m-1)!

e
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Reni entropy

Renyi entropy is necessary for quantitative
information as can be used as a measure of

1
1-9

I.(8) =

1-6

From equation (2.27) we get the renyi entropy of x
given eq. (2.) by applying the same steps for finding i,
Parameters Estimation of W-EE

In this section , the two considered estimation methods
(the maximum likelihood estimation and the moment
method ) are illustrated to estimate the for parameters
of W — EE distribution .
L =TIIL, f(X;,a, A, a,b)

Form substitution the eq.(6) into eq.(39)
—axA [ oA b
—€ OCX] [e“x—l + T]]

= (@"[IiL, x;P e~ XLy xiP[1—e” it iLi[1— e oXi]A [

L=, axPe—ax’[1-e™ 1

Take In

n

e®i—1 = x;

entanglement ,and it is also importantant in statistics
and ecology as an indicator diversity.

The renyi entropy of the random variable X with pdf
is known as follows : [11]

log(f f8(a) dx,wher § > 0,8 # 1
0

) 8
1 log(f [axre—axb[l—e_“x]x [xba)\[l _ e—ocx]}\—le—ax + bXb—l[l _ e—(xx]k]] dX)
0 ,wher$ > 0,6 #1

(38)
Max "Likelihood" Estimation

The parameters estimation method is the most used
in the literature , we will discuss the Max likelihood
"ML" estimation for the parameters of the (W — EE)
distribution for complete samples for a random
samples ,

If X1,X5,X3, e e ,X, denoted random sample from
the X~W — EE distribution , then the L.K.F is given

by
(39)

(40)

ar b ] (41)

n

n n
al b
l=nlna +Zlnxib —ainb [1—e ] + AZln[l — e ] +Zln [e“xi——l-l_x_i
i=1 i=1

i=1 i=1
(42)
% == -ILixP(l—e @)t =0 @3)
=TIk —a X, x (1 — e ) inx; + T, D= 0 (44)
% = —aYl xPHIA[1 — e Al em i 4 Z?:M(%) Ly, Ek(e‘;‘xi—lk)—axxieaxi)

(45)

e®Xi-1 x;

).(eaxi_l)z
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== —aYl, x P (In(1 — e ®0))(1 — e X)X + Y In[1 — e~ ] + PR, — =0

(46)

We can obtain the "MLES" of the parameters Let x4,X5,X3,

aAxj+be**i—b

...... ,Xpbe random sample from the

a,A,a,andb by solving the equal. (43)-(46) X~W — EE(q, A, a, b) the method of moment of EE-
numerically for a,A,a,and b . W distribution is defined by the following equation

The method of moment estimator

1
E(XT) = 0, X,

Where E(XF) is the r™ moment about origin given equation (23).

For the case r = 1, equation (47) becomes as follows:

(47)

o 1J+n1 r(2+b(j+1) o woo  (DITMal 6 T(1+b(j+1)
E(X1) = aod X2 N5 ( ) a (7\(1+1) 1)(—1)+asz=02m=0( ).' a (7~(1+1)) (1+b(+1) _

(an+a)2+bG+1)

=1;Xs1 =X

For the case r = 2, equation (47) becomes as follows:

(am)1+bG+1) -

(48)

o 1)i+ngi r(3+b(j+1 o woo (DITMal r2+b(j+1
E(XZ)—aa?\Z] OZ ( ) a (7\(]+1) 1) ( (j+1)) + b2j=02m=0( )]' a (7\(]+1)) ( (G+1)) _

(an+oc)3+b(j+1)

=1HX52 (49)

For the case r = 3, equation (47) becomes as follows:

(am)2+b(j+1) -

. 1)i+nal r(4+b(j+1) o woo  (=1IFMal r(3+b(j+1
B(C) = ac 52 i S22 (G071 TR0y gy 3 i, CLE (AG) L0041

(an+oc)4+b(j+1)
(50)

For the case r = 4, equation (47) becomes as follows:

(am)3+b(j +1)

o woo (DR AG+1)-1y T(5+b(+1)) o woo (=DMl ) I(4+b(j+1))
E(X*) = aa7\21=02n=0—]—! ( Ut? 1)—- +ab Y20 Xm=0 it ( (11:1)) j

(om+oc)5+b(1+1)

(51)

(am)4+b(l+1)

We can obtain the estimates for the parameters a,A,aandb by solving the equations (48) _(51)for
a, A, a and b by using the numerical methods such as Newton Raphson method .

Applications

In this part , we explain the real data to show the importance of the W — EE distribution , so that we will
contrast the W — EE(X; a, b, a, A) distribution with the following distributions

o
Exponentiated-Weibull (E — W) with cdf F(X; a,8,6) = [1—e(™°]" x> 0.

Odd Generalized — Exponential (OGE — E) with cdf F(X;a,a,1) = [1 — e"‘(eax‘l)]a x>0,
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: : . _ _ —eBxt+0xY)
Flexible — Weibull (F — W) with cdf F(X; o, A, 8,6) = [1— e | x>o0.

In the order the W — EE distribution with the above distributions the measures of good ness of fit including
the Akaike Information criterion "AIC", Hannan-Quinn Information Criterion "HQIC" , Consistent Akaike
Information criterion "CAIC" , and Bayesian Information criterion "BIC"are used [7] where :

AIC = —27 + 2q , BIC = —27 + qlog(n)
~ 2gn ~

Where 2 denotes the logarithm likelihood function Data Set
evaluated at the max likelihood estimates , "n" is
the sample volume and "q" is humber of parameters

. In general , the distribution , which gives smallest

We have a real dataset corresponding to healing time
(in weeks) of random sample of (128) Lung cancer

values from criteria , shows the more suitable to the patients .
data .
Dataset are :

13.11,2.09,3.48,4.87,6.94,8.66,0.08,23.63,0.20,2.23,3.52,4.98,6.97,9.02,13.29,0.40,2.29,3.57,5.06,7.09,9.22,13
.80,25.74,0.50,2.46,3.64,5.09,7.26,9.47,14.24,25.82,0.51,2.54,3.70,5.17,7.28,.74,14.76,26.31,0.81,2.62,3.82,5
:32,7.32,10.06,14.77,32.15,2.64,3.88,5.32,7.39,10.34,14.83,34,26,0.90,2.26,4.18,5.34,7.59,10.66,15.96,7.66,1.
05,2.69,4.23,5.41,7.62,10.75,16.62,43.01,1.19,2.75,4.26,5.41,7.63,17.12,46.12,1.26,2.02,4.40,5.49,36.66,11.25
,17.14,79.05,1.76,2.87,5.62,7.87,11.64,17.36,1.40,3.02,4.34,5.71,7.93,11.79,18.10,1.46,4.33,5.85,8.26,11.98,1
9.13,1.35,3.25,4.50,6.25,8.37,12.02,2.83,3.31,4.51,6.54,8.53,12.03,20.28,2.02,3.36,6.76,12.07,21.73,2.07,3.36,
6.93,8.65,12.63,22.69 .

The "MLEs" of the type parameters for the data are
given in chart (1.1) and the numerical values of the
type selection statistics 1, "AIC" , "HQIC, "
"CAIC" and "BIC" are listed in chart (1.2) We can

see from chart (1.2) that W — EE type gives the
smallest values for the criteria "AIC , HQIC , CAIC
"and "BIC" so it represents the dataset better than the
other selected types .

Chart 1.1.parameters estimates for the data

Type Parameters estimates
W — EE(X;a,b,a,A) 4=0.111 b =1.015 a@=0413 A= 0.436
E—-WX;aal) a=1422 A=0.192 6=0.79 _
OGE — E(X;a,a, 1) a=0.1 @=0.1 A=0.1 _
F—-WF(X;aAB,0) a=0.1 B=01 A=0.1 6 =0.539
Chart 1. 2. The statistics 2, AIC ,HQIC , CAIC and "BIC"for the dataset .
Type ? AlC HQIC CAIC "BIC"
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W — EE(X;a,b, a, A) -415.2734 838.5469 849.9550 838.8721 843.1820
E—-W(X;aa,1) -420.655 847.2665 860.6747 847.4601 850.7429
OGE — E(X;a,a,1) -7935505 1593.1 1606.5 1593.3 1596.6
F-WFX; a2, B,0) -739.4106 1486.8 1498.2 1487.1 1491.5
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