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Abstract 

The purpose of the present study was to estimate the parameters of the new stochastic Frontier model by 

nonlinear smooth transfer function structure with compound error. In the stochastic Frontier model, the 

compound error consists of two statistical components: model error and technical inefficiency, so that the 

technical inefficiency of the function is assumed to be autocorrelated. For the parametric part, the nonlinear 

smooth transfer function was used using the Taylor series, and for the non-parametric part, the moderating 

factor was used to estimate the model parameters. The research model was evaluated using data on the 

number of patients admitted to hospitals for Covid 19 disease. The result showed that the parameter 

estimates are consistent and have less error than conventional models. 
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Introduction 

The classical time series prediction consists of 

estimating unknown parameters in a suitable 

model by presenting a model for the future. It 

should be noted that the nonlinear regression 

functions are the main element of nonlinear time 

series models, especially nonlinear 

autoregressive models. Therefore, in the 

nonlinear autoregressive model, the prediction of 

the unknown function f plays a key role. In this 

regard, researchers in the field of statistics and 

econometrics, using parametric and non-

parametric methods, have been able to find an 

estimate for the function f(0). According to the 

time data conditions, although the use of 

parametric and non-parametric methods 

separately does not provide a suitable estimate for 

the f(0) function and has a relatively large mean 

squares of error (risk), the use of semi-parametric 

estimation methods, reduces the error of the 

predictor function. Therefore, the use of semi-

parametric estimation in threshold first-order or 

higher-order functional autoregressive models 

contributes greatly to the good fit of nonlinear 

time series data (Gao, 2005). 

The semi-parametric method is used to estimate 

the first-order or higher-order functional 

autoregressive model function for the better fit 

criterion on the functional time data. So, most of 

the previous articles are in the way of introducing 

ordinary autoregressive models and in particular 

functional autoregressive models (different linear 

and nonlinear functions) that have studied 

historically in such a way. Kargin and Onatsky 

(2008) proposed curve prediction by means of 

functional autoregressive models. They used the 

prediction of autoregressive processes for 
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functional time data, using the technique of 

predictive factor resolving for the functions of the 

functional autoregressive model, and also tried to 

improve the estimation in such models.  

Chen (2003) used the short-term  functional 

autoregressive model for electricity price curve 

with  functional estimation using conventional 

methods. Also, the nonparametric estimation 

under error dependence in functional 

autoregressive models, first was used by Györfi 

(1989) and then by Masry and Farshiain (1991) 

Harland (1992), Hardle et al. (1997), Young 

(1998) and Boske (1998), also most of them have 

pointed to nonparametric methods in functional 

autoregressive models. Murana (2001) proposed 

a semi-parametric approach to short-term 

forecasting of oil prices and showed how by use 

of Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) and the oil price 

fluctuations could predict short-term oil price 

distributions.  

The proposed approach can both provide a 

measure for future oil prices and calculate 

interval forecasts of immediate oil price. Due to 

the nonlinear phenomenon of the process which 

is dominant on the time series of prices, it can be 

expected that the nonlinear models (such as 

functional autoregressive models) lead to better 

predictions. For first-order functional 

autoregressive models, the estimation of kernel 

regression function was investigated by Masry 

(2005) and the application of functional 

autoregressive models as a functional form of 

classical models was studied by Cardot and Besse 

(2005) 

Antoniadis (2003) used a small kernel 

approximation (widely used in various industries 

and civil engineering) for functional 

autoregressive models. Also, Zhang (2012) 

proposed a semi-parametric estimation using the 

semi-functional partial linear model. But the use 

of semi-parametric estimation methods only for 

the first-order autoregressive model with 

independent error, has been studied by Zhuoxi et 

al. (2009). 

One of the main problems of many 

macroeconomic models is that the time variables 

have an inflexible decreasing or increasing form. 

In addition, it has been proven that in business 

cycles, the decreasing or increasing trend of key 

macroeconomic variables such as production and 

employment during periods of recession is faster 

than the rate of increase during periods of 

prosperity. The evaluation of the corporate 

effectiveness in a special industry is based on a 

simple idea of dividing the units into efficient 

units and inefficient units. When analyzing 

performance, it is necessary to define a Frontier 

by which to measure the potential inefficiency of 

the unit. This Frontier is often based on 

production data (usually labor and capital) - this 

is the area of technical efficiency. The efficiency 

of a company can be considered as a situation in 

which it is not possible to produce more with the 

given resources. The cost efficiency can be 

checked by adding information about input cost 

In analysis. Today, two different approaches are 

used to measure efficiency: nonparametric and 

parametric. Nonparametric methods compare the 

observed inputs and outputs of each firm with 

firms having a function in a data set without 

having information about production 

performance. Stochastic Frontier models by 

Aigner et al. (1977) is widely used to evaluate the 

performance of companies in terms of efficiency. 

In addition to its definite nature, the 

nonparametric approach is criticized mainly for 

the fact that efficiency scores are sensitive to the 

select of inputs and outputs. 

Data envelopment analysis method makes the 

most use of non-parametric methods for model 

evaluation and optimization. The most common 

method used to evaluate technical efficiency has 

been selected regardless of the industry. 

However, in the models where the percentage of 

parametric methods in efficiency evaluation is 

constantly increasing, the models with functional 

form specifications for the Frontier as well as 

noise and inefficiency processes are completely 

parametric. Studies such as Kumbhakar et al. 

(2007) have tried to reduce some of the 

limitations in parametric models, but so far all of 

these approaches have been limited to a 

univariate response variable. Some researchers 

(e.g., Simar, 2010; Kuosmanen & Johnson, 2017) 

have proposed nonparametric estimation of 

directed interval functions in order to address 

multiple inputs and outputs, and have raised 

endogenous issues that are overlooked or are 

finally considered by imposing restrictive and 

unacceptable assumptions. In another study, 

nonparametric methods developed by Simar et al. 
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(2010) are expanded. Hafner et al. (2018) define 

multiple inputs and outputs in an almost 

nonparametric framework while minimizing 

endogenous problems in the model. 

Stochastic Frontier models have been used to 

predict production, cost, and profit and loss 

margins models in many papers (Greene, 2005; 

Kamhakar, 1991; Huang Li, 1994; Mastomarco, 

2012;Jin ,2019, Heshmati, 2019; Button, 2009, 

Zang 2020). Also, the application of stochastic 

border models  are mentioned in the steel industry 

(Aigner et al., 1977) banking (Simar, 2010), 

agriculture and in particular the rice production 

cost model (Button, 2014, 2009) and the stock 

market (Zubair Hassan, 2005). 

In recent years, the researchers in the filed of 

applied statistics, econometrics and industrial 

management have done significant works in the 

form of improving and correcting the estimation 

of frontier models. So far, many studies have 

been conducted on the efficiency of the banking 

system with regard to basic knowledge in 

stochastic frontier models, and most of them use 

simultaneous equation methods (Abel 2018). In 

order examine the differences in competition 

efficiency between financial actors, differences in 

product supply in terms of quality and the level of 

development in financial markets, the frontier 

models were used and also the bank cost 

efficiency was evaluated by use of stochastic 

frontier analysis (Li, 2010). 

The growth of theoretical development and 

improvement of estimation methods for 

stochastic frontier models is significant due to its 

high rate of application (Fan, 1996; Kamhakar, 

2015 and 2012; Wang, 2015; O'Donnell, 2012). 

On the other hand, stochastic frontier models are 

more important due to the role of technical 

inefficiency and by attention to the input of 

environmental factor variables and traditional 

input and output variables.  

The selection of estimation method for stochastic 

frontier model analysis is the maximum 

likelihood, but the methods of the least squares 

and non-parametric estimation and so Bayesian 

estimation developed by Green (2005) have been 

investigated. Specifically, the maximum 

likelihood issue for the stochastic frontier model 

is a finite optimization problem because it has 

parameters limited to the positive axis. With 

appropriate initial values, the practical effect of 

applying such a model may not be effective in 

predicting, but the use of common approximation 

methods such as Newton's method and by re-

parameterization and interactive standardization 

of errors will be closer to the appropriate 

prediction. 

In Chen (2014) study, asymptotic estimates and 

inferences for threshold effects in stochastic 

frontier models are mentioned. In the present 

study, structural changes in the model including 

the threshold function and the threshold 

parameter value are evaluated using exogenous 

variable multivariate changes. 

In this study, a stochastic frontier model with 

threshold functional coefficients in different 

states is investigated. Parametric methods such as 

maximum likelihood method, conditional 

minimum squares method have been used and 

Farnoosh and Mortazavi (2011), Farnoosh and 

Hajebi (2019) methods have been used for 

nonparametric moderator estimation method. In 

the present paper, the efficiency of frontier 

models is obtained using the semi-parametric 

method and a more appropriate prediction will be 

made for the generalities of the model. Also in the 

present study, some issues like identification and 

the estimators characteristics are reviewed and 

them their limited sample performance are 

examined via Monte Carlo experiments method. 

The practical implementation of the method is 

demonstrated using Covid 19 data. The rest of the 

other sections of this article are as follows. In 

Section 2, firstly, the threshold autoregressive 

model and then the threshold autoregressive 

stochastic frontier model are define in two forms. 

In this section the proposed model of stochastic 

frontier with threshold functional coefficients and 

a semi-parametric approach and with paying 

attention to the structure of environmental factors 

are presented. 

In the section of Findings, a simulated study is 

performed to show the behavior of several finite 

samples of the proposed estimates. In the final 

section, the conclusion and general discussion 

and evaluation of the proposed model are 

presented. 

 

Semi-parametric Estimation in Nonlinear 

Autoregressive Model with Independent 

Error 



Raheleh Zamini 2862 

 

The first-order nonlinear autoregressive model is 

considered below 

            ( 1-1) 

So that the error of the model is a series of 

independent and identically distributed random 

variables with zero mean and variance  

.Also  is independent of for any t. 

Traditionally, a parametric or nonparametric 

approach can be used to estimate the 

autoregressive function. If there is information 

from previous experiments and the analysis is 

formed under the previous structure, it can be 

assumed that the regression function related to 

the nonlinear autoregressive model has a 

parametric framework as the following 

parametric model: 

              
(1-2) 

Which is an initial choice; where is a 

parametric space. In this case, the regression 

function estimator is replaced by the parametric 

vector estimator , and as a result the regression 

function f(0) is estimated as follows: 

                              (1-

3) 

In which  is an estimator of . In other 

words, if little information is available about the 

nature of the f(0) function, it is a reasonable non-

parametric approach mentioned Fan and Truong 

(1993), and Francesco (2005). For example, a 

regression function estimator D, known as a 

kernel estimator, is defined as follows: 

                      
( 1-4) 

In which k(0) is a kernel function and  is the 

bandwidth that depends on the number of sample 

sizes (n). 

The kernel estimator is a special case of the 

second-order polynomial estimator proposed by 

Hardel and Shibakov (1997). If the parametric 

assumptions are valid, the parametric method is 

preferred. However, if the parametric 

assumptions are not valid, the result of the 

parametric method can lead to misleading 

inferences about the regression function. In this 

case, the nonparametric method is considered 

without accepting the assumption that the 

structure of the parameters be controlled with 

finite dimensions. 

 

Semi-parametric Estimation in First-order 

Nonlinear Autoregressive Model with 

Dependent Error 

In the present research, the first-order nonlinear 

autoregressive model with dependent error is 

defined as follows: 

     
                            (1-5) 

In which  is a series of independent and 

identically distributed variables with mean zero  

and variance . Also  and  are 

independent from each other for each t. 

In recent years, a combination of parametric 

forms and nonlinear functions has been used as a 

more efficient model in various branches of 

applied sciences, especially in applied statistics, 

econometrics and financial studies. For example, 

semi-parametric models with a single index and 

in form of generalized linear partial time series 

models are one type of these combinations. Time 

series models with structure of nonlinear 

functions have been proposed in Hidalgo (1992), 

Delgado and Robinson (1992), Truong and Stone 

(1994). They have considered a time series model 

with non-parametric errors. 

               ( 1-6) 

If the model error is defined as follows: 

               (1-7) 

 is also a static time series with finite second 

torque. In such models,  are scalar and 

defined as numerical observations and and also 

g(0) is an unknown function. Also  is a 

static time series with zero mean and finite 
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variance. Errors  are random variables with 

the same distribution and independent of each 

other. Schick (1996) proposed an efficient 

estimation in a semi-parametric collective 

regression model with autoregressive error. 

Truong and Stone (1994) proposed 

nonparametric regression models with linear 

autoregressive error as follows: 

 
The model error is defined as follows: 

 

In such models,  is a two-variable 

time series and  is an unknown parameter with 

condition .  

As in the previous model,  is an unknown 

function and  is a sequence of independent 

errors with mean zero and finite variance. In order 

to estimate the parameters, they used non-

parametric methods (Truong and Stone, 1994). In 

financial studies with hazard fluctuations and 

with unstable conditional variance, those models 

with dependent errors are used which are 

presented in Tong (1990) and Li (1999) articles. 

From 1995 to 2005, several linear autoregressive 

conditional hierarchical models in which the error 

is dependent have been introduced, so that one of 

such econometric models is as follows: 

          
(1-8) 

In which  is a static time variable and 

 is a smooth 

function of . Both components of the model, 

parameter  and function g, can be estimated 

which in the articles conducted by Granger et al. 

(1997); Hjellvik (1998); Gao and King(2005) 

some studies have been examined in this filed. 

Zhuoxi et al. (2009) have successfully introduced 

a modified model of it in the form of a first-order 

nonlinear time series model, as follows, and have 

estimated the regression functions. 

They used semi-parametric estimation methods 

in order to estimate the  function; so that the 

errors of this model were random variables 

independent of each other, identically distributed 

and had a mean of zero and variance . It 

should be noted that in this study the suggested 

model has been proposed with the dependent 

error, which is in the form of a first-order 

autoregressive model. In this regard,  is 

considered as a parametric framework known as 

the parametric model, so: 

 
Or  

           ( 1-9) 

In which:  forms the parametric 

space. 

The regression function  is defined by the 

conditional least squares method as  

 or 

, provided that is an 

estimator of . In other words, if information 

about the nature of  is available (some 

information about behaviors and changes in the 

 function is obtained experimentally), the 

nonparametric method would be appropriate. 

A semi-parametric estimator based on the 

Nadaraya-Watson method, used as a regression 

function estimator , is a kernel estimator 

described below: 

                          
(1-10) 

 

In which  and  are the Kernel 

function and the corresponding bandwidth, 

respectively. 
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1-4- Stochastic Frontier Model with Smooth 

Transfer Function 

 A production stochastic frontier model with 

threshold functional coefficients in normal (non-

autoregressive) form is introduced as follows, in 

which C is the logarithm of the input variables in 

the structure of the production process. 

 utit XXXt ,...,'=  is a logarithmic vector of k  

input variables. tZ  is a 1P  vector (for 

example, the time or location of two indices can 

also be used as a spatial time series). The simplest 

form frontier model of smooth transfer function 

is as follows: 
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(.)  is the width of the origin and (.)  is a 

1*k  vector of the parameter and xt is a 

independent variable vector of the input 

logarithm k which is defined as a threshold and 

piecewise function. Therefore all three 

coefficients of the model, (.)(.),(.), 21   are 

placed as normal and threshold in the unknown 

function of tz . Also ),0(
..

 v

dii

t NV   are the model 

perturbations. ),( tt zUu =  is a positive 

technical inefficiency. 

According to Caudill (1995), the perturbation 

function is defined hierarchically. That is, it is 

assumed that 
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The production border in relation (1-12) is not 

conditional expectation of ty , because the error 

analysis sentence tt UV −  does not have a mean 

of zero. To solve this problem, the Equation (1-

11) can be rewriten and be converted into another 

conventional form: 
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Or in equivalent; 
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Equation (3) can always be estimated based on a 

stochastic smooth coefficient model and is 

defined as follows (Huang Li, 2002): 
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In which, n  is the sample size. )(0K is the 

production kernel and h  is a −p  vector of 

bandwidth that can be selected by the least 

squares validation method. Therefore: 
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model. 
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22 ,  can be obtained first by the 

maximum likelihood. 
ttu z ),(2  can be re-

estimated. 

 

Least Squares Method 

Weight method can be used as: 
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So that: J is a function of weight so that K given 
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As a result, the   estimator contains 12  ,,r  

(threshold value) with method LS as follows: 
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In fact, 12  ˆ,ˆ,r̂  is the total conditional least 

squares (CLS) based on 12 ,,..., yyyn  

observations. Under some conditions of the 

technical estimator, Klimko and Nelson (1978) 

showed strong CLS adaptation under different 

conditions. Next, the nonparametric modifier 

estimation in the form of )().ˆ,(ˆ
121 xxg   and 
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criterion of native polynomials fittingL −2
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According to equation (*) 
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If the parametric assumptions be established in 

the relation 
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Then the parametric method is acceptable for a 

number of reasons. 

However, if the parametric assumptions of 

relation (**) are not established, then the 

nonparametric method leads us to a misleading 

inference about the regression function. 

In this case, the nonparametric method can be 

performed without accepting these assumptions, 

thus making it possible to introduce an approach 

that includes both parametric and nonparametric 

methods. In this comparison, by combining the 

methods of Fan (1996), Farnoosh and Mortazavi 

(2011) and Farnoosh et al. (2019) in frontier 

models have been followed. 

In the combined method, the initial estimation of 

the parameters and the introduction of the non-

parametric function in the frontier model are 

used. For this purpose, for the nonparametric 

estimation section, using the same idea as Hjort 

and Jones (1996), Naito (2004), the criterion for 

fitting second-order polynomials is defined as 

follows: 
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(1-16) 

In which, )(ˆ xfi  are the unknown autoregressive 

functions. The estimator )(ˆ xi  is obtained from 

)(xi by minimizing the above second-order 

fitting criteria relative to )(x . Thus 

nonparametric estimators )(xi are obtained.  

The above formula is focused on the )(
~

xf i  in 

order to estimate the nonlinear autoregressive 

function, and therefore there is no unknown value 

in the estimate of )(xf , which is represented 

by )(
~

xf , and can be be obtained using sample 

information and data simulation. The asymptotic 

efficiency and parameters are confirmed by the 

following conditions according to the articles of 

Farnoosh and Mortazavi (2011), Farnoosh and 

Hajebi (2016). In order to estimate the 

nonparametric moderating factor, a criterion 

called localized fit L2 is used and the parameters 

are estimated with the initial conjecture for the g 

(.) function, and taking into account the Taylor 

series, and thus the g (.) function is finally 

estimated. For the compatibility of the model 

parameters, the following items are considered as 

classical hypotheses: 

- The sequence of the random variable yt is an 

ergodic, static, continuous, bounded and 

monotonically increasing sequence. 

- The functions g1, g2 both are continuous 

mathematical functions and has continuous 

derivatives. 

- The mathematical expectation of difference is a 

random variable of yt and the function g is finite. 

- yt is a random mixing variable. 

 

Results of Practical Example 

In order to show the efficiency of stochastic 

estimation for the frontier model with a smooth 

transfer function, the error investigation approach 

has been considered in the present study. Using 

Monte Carlo simulations with known nonlinear 

functions, the error of parameters estimation in 

the nonlinear function is investigated, which 

good results has been shown. In the practical 

example using E-views software, the proposed 

model designed for the rate of patients recovery 

based on the variables of the rate of patients with 

confirmed testing and mortality rate and the 

number of critically ill patients is considered that 

the model has good results. 
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Dependent Variable: SHEDATBIMARI  

Method: ARDL    

Date: 06/22/20   Time: 00:02   

Sample (adjusted): 3/17/2020 5/15/2020  

Included observations: 60 after adjustments  

Maximum dependent lags: 4 (Automatic selection) 

Model selection method: Akaike info criterion (AIC) 

Dynamic regressors (4 lags, automatic): NERKHBEBOD   NERKHFOTI 

TESTED  MOBTALAYAN   

Fixed regressors: C @TREND   

Number of models evalulated: 2500  

Selected Model: ARDL(4, 4, 1, 4, 4)  

     
     Variable Coefficient Std. Error t-Statistic Prob.* 

     
     SHEDATBIMARI(-1) 0.792834 0.118507 6.690178 0.0000 

SHEDATBIMARI(-2) 0.124822 0.163623 0.762865 0.4504 

SHEDATBIMARI(-3) -0.697895 0.168796 -4.134554 0.0002 

SHEDATBIMARI(-4) 0.472892 0.116376 4.063472 0.0002 

NERKHBEBOD -122.9167 385.9949 -0.318441 0.7519 

NERKHBEBOD(-1) -282.9663 376.3379 -0.751894 0.4569 

NERKHBEBOD(-2) 241.8978 383.0327 0.631533 0.5316 

NERKHBEBOD(-3) 449.8110 293.6553 2.531765 0.1341 

NERKHBEBOD(-4) -575.9904 274.6742 -2.096994 0.0429 

NERKHFOTI 149.2879 73.81768 2.022386 0.0504 

NERKHFOTI(-1) 83.49742 69.41803 3.202820 0.0167 

TESTED 0.003750 0.003033 1.236711 0.2240 

TESTED(-1) -0.007331 0.004420 -1.658666 0.1056 

TESTED(-2) 0.005089 0.004200 2.211643 0.0333 

TESTED(-3) 0.001884 0.003999 0.471152 0.6403 

TESTED(-4) -0.005491 0.003031 -1.811989 0.0781 

MOBTALAYAN 0.157450 0.056967 2.763870 0.0089 

MOBTALAYAN(-1) -0.041420 0.073466 -0.563801 0.5763 

MOBTALAYAN(-2) -0.158403 0.079664 -2.988385 0.0342 

MOBTALAYAN(-3) -0.006993 0.085018 -0.082249 0.9349 

MOBTALAYAN(-4) 0.240116 0.067373 3.563985 0.0010 

C 564.3495 743.6806 0.758860 0.4527 

@TREND 16.36046 15.27525 1.071044 0.2911 

     
     R-squared 0.993070 Mean dependent var 3170.617 

Adjusted R-squared 0.988949 S.D. dependent var 564.0710 

S.E. of regression 59.29721 Akaike info criterion 11.28624 

Sum squared resid 130097.9 Schwarz criterion 12.08907 

Log likelihood -315.5873 Hannan-Quinn criter. 11.60027 

F-statistic 240.9950 Durbin-Watson stat 2.135360 

Prob(F-statistic) 0.000000    

     
     *Note: p-values and any subsequent tests do not account for model 

selection.   
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Conclusion 

In the present study, which introduces a threshold 

autoregression model in order to estimate the 

stochastic parameters of a frontier model, 

nonparametric modulating methods and using 

maximum likelihood estimation methods, a 

useful experiment in parameter detection has 

been used. In the application part, the proposed 

model has a good predictability for the recovery 

rate of COVID- 19 virus. 
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