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Abstract 

In order to achieve the shortest possible final time, solve the problem of optimal control. The problem 

of mathematics model control criterion was prepared and solved by our group. In addition, we 

developed a program to improve and display the results of our experiments.  
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1. INTRODUCTION  

It is referred to as dynamic control when the 

method of using model predictions to plan an 

optimized future trajectory for time-varying 

systems is used (DC). [1,3,] Several terms are 

frequently used to describe this process, 

including Model Predictive Control (MPC) and 

Dynamic Optimization. Using numerical 

integration to solve dynamic control problems 

at discrete time intervals, which is analogous to 

measuring a physical system at specific time 

points in real time, a method for solving 

dynamic control problems has been developed. 

Every time step, the numerical solution is 

compared to a desired trajectory, and the 

difference between the two is reduced to the 

smallest possible value by adjusting parameters 

in the model that are susceptible to variation. 

First, the first control action must be 

completed; then the entire process must be 

completed again, at the next time instance. Due 

to the fact that objective targets can change 

over time and that updated measurements can 

result in revised parameter or state estimates, 

the process is repeated in this case. 

1-1 New Math Model: (Minimize Final 

Time) 

    Subject to differential constraints, the new 

math model optimal control problem seeks to 

minimize the final time. Many areas, such as 

manufacturing, transportation, and energy 

systems, are concerned with reducing final time 

to the absolute minimum. It is the desired end-

state that must be met in each case, and the 

optimizer's goal is to achieve those conditions 

in the shortest amount of time possible. 

𝑴𝒊𝒏𝒖(𝒕)      :         𝒕𝒇 

Subject to      :         
𝒅𝒙𝟏

𝒅𝒕
 = u 

𝒅𝒙𝟐

𝒅𝒕
 = 𝐜𝐨𝐬(𝒙𝟏

𝟐 (𝒕)) 

 
𝒅𝒙𝟑

𝒅𝒕
 = 𝐬𝐢𝐧(𝒙𝟏

𝟐 (𝒕)) 

                                                            

𝒙(0) = [𝝅/𝟐,4,0] 

                                                           

 𝒙𝟐(𝒕𝒇) = 0 
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                                                              -

2≤ u(t) ≤ 2 

To solve the new math model problem, one 

must specify a time horizon in the range of 0.0 

to 1.0, along with the additional tf parameter, 

which scales the final time to one. The 

conditions x2(tf)= 0 and x3(tf)= 0 are binding 

at the end of the system and prevent it from 

having a lower final time than the conditions. 

Equivalent Form for GEKKO 

    𝑴𝒊𝒏𝒖(𝒕)(𝒕𝒇)      :          𝒕𝒇 

  Subject to      :         
𝒅𝒙𝟏

𝒅𝒕
 = 𝒕𝒇u 

                                                               
𝒅𝒙𝟐

𝒅𝒕
 = 𝒕𝒇 𝐜𝐨𝐬(𝒙𝟏

𝟐 (𝒕)) 

        
𝒅𝒙𝟑

𝒅𝒕
 =  𝒕𝒇 𝐬𝐢𝐧(𝒙𝟏

𝟐 (𝒕)) 

𝒙(0) = [𝝅/𝟐,4,0] 

𝒙𝟐(𝒕𝒇) = 0 

𝒙𝟑(𝒕𝒇)= 0               

-2 ≤ u(t) ≤ 2 

 

2. Basic principles 

2.1 Dynamic Optimization 

    Calculating future outcomes using 

differential and algebraic equation 

mathematical models in order to formulate 

smart policies on the basis of these predictions, 

dynamic optimization is a decision-making 

process that can be used to formulate smart 

policies. This type of analysis can be carried 

out using a wide variety of tools and techniques 

that are available. The applications listed below 

are representative of their kind, as they are both 

simple in nature and quick to compute. The 

purpose of this compilation is to demonstrate 

how to set up, solve, and analyze the problems 

presented in this collection of problems. In 

order to discuss alternative strategies, please 

use the comment sections located at the bottom 

of each page. While studying the optimal time 

path for a particular function, dynamic 

optimization is frequently concerned with the 

stock-flow relationships that exist between 

variables at different points in time. [10,11] 

Certain variables involved are stock concepts, 

also known as state variables in dynamic 

optimization, whereas flow concepts are more 

commonly referred to as control variables in 

the field of dynamic optimization. For example, 

in the context of production theory, stocks 

change from one period to another, and their 

increase is dependent on both the stocks and 

the flows that occur during that period. 

Optimization over time can be expressed as the 

sum, difference, or product of functions that are 

also changing over time, with the objective 

function being the sum, difference, or product 

of these changing functions. 

 

Figure (1) model- predictive control 

2.2 Formulation Strategies 

      In order to achieve efficient and reliable 

solution of dynamic systems, model 

formulation is one of the most important factors 

to consider. Model formulation changes are not 

intended to alter the equations themselves; 

rather, they are intended to put them in a form 

that allows solvers to more easily find an 

accurate solution. Some of the most important 

strategies for model creation and formulation 

are discussed in detail in each of the sections 

below. Starting with a fundamental 

introduction to the APMonitor Modeling 

Language, the discussion moves on to more in-

depth topics. Models are divided into sections, 

which include constants, parameters, variables, 

intermediates, equations, objects, and 

connections, amongst other elements. It is 

necessary for all expressions to be created in 

one of the previous sections before they can be 

used in the equations section. Individual 
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parameters or variables are initialized in the 

order in which they are listed in the model file, 

with the first parameter or variable being set 

first. The equations, on the other hand, can be 

listed in any order because they are all solved at 

the same time. 

2.3 Numerical Differential Equation  

Nominally, a numerical method for ordinary 

differential equations is a method for 

determining numerical approximations to the 

solutions of ordinary differential equations 

(ODEs). In addition, their application is 

referred to as "numerical integration," although 

this term can refer to the computation of 

integrals as well. [6,7,15,16,17] Because of the 

nature of differential equations, many of them 

cannot be solved using symbolic computation 

("analysis"). If the solution is needed for 

practical purposes – such as in engineering – a 

numeric approximation to the solution is 

frequently sufficient. The algorithms that have 

been studied here can be used to compute an 

approximation of this kind. An alternative 

method is to employ calculus-based techniques 

to obtain a series expansion of the solution to 

the problem. There are many different scientific 

disciplines where ordinary differential 

equations can be found, including physics, 

chemistry, biology and economics. On top of 

all that, some numerical partial differential 

equation methods convert the partial 

differential equation into an ordinary 

differential equation, which has to be solved 

afterward. 

 

3. Optimal Control 

    Control is concerned with a number of 

different aspects. Stability, precision, and speed 

are all important. A cost that can be computed 

at each time step and that reflects the quantity 

we want to minimize is defined as an optimal 

control cost in optimal control. It could be a 

matter of time or precision, or both at the same 

time, or it could be a matter of other variables 

to optimize (consumption of fuel, etc..). 

[8,9,20,21] First and foremost, let us consider 

that the quantity that we are attempting to 

optimize is that of time. It is the goal of this 

problem to find the sequence of inputs to the 

system that will steer it to the desired state in 

the shortest amount of time possible, given an 

initial system state and a desired state to reach. 

This means that once we have identified the 

optimal controls, there will be no other 

sequence of controls that will allow us to 

achieve the desired state in a shorter amount of 

time. Consider the case of a car, which can be 

driven in a straight line by varying the amount 

of pressure applied to the gas pedal. [12,13] 

The optimal control problem can be expressed 

as follows: given a starting point of A and a 

destination of B, how hard should the driver 

press the gas pedal to bring the vehicle to a stop 

at B as quickly as possible? Alternatively, in 

control terms, the problem can be stated as 

"find the time-optimal sequence of controls u(t) 

(the angle of the gas pedal) from A to B" 

(resulting in a motion of the car x(t). In light of 

our prior knowledge of optimality, we would 

almost want to formalize this into a 

mathematical formulation. Something along the 

lines of: 

𝒎𝒊𝒏𝒙,𝒖 ∫ 𝒕
𝑩

𝑨
dt 

If you're still with me, you're probably 

wondering how we're supposed to figure out 

u(t) and x(t) with this because it's not even in 

the integral to begin with. [14] This is where 

the dynamics come into play. In optimal 

control, all of the systems taken into 

consideration are dynamic systems, which 

means that they evolve according to a law of 

evolution through time of the form x'(t) = 

f(x(t)). 

Take, for example, an air conditioner, where 

the temperature is governed by the laws of 

thermodynamics and a missile, which is 

governed by the laws of motion, as is the case 

with our hypothetical car. Don't you believe 

that these factors should be taken into 

consideration when determining how quickly 

we can get from point A to point B? There's no 

need to complicate things; simply include it as 

a constraint of the minimization problem: 

𝒎𝒊𝒏𝒙,𝒖 ∫ 𝒕
𝑩

𝑨
dt 
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w.r.t 

x’(t) = f(x(t)) 

 

Figure (2) Optimal Control 

 

4. GEKKO (Python) 

     GEKKO Python is intended for large-scale 

optimization, and it provides access to solvers 

for problems that are constrained, 

unconstrained, continuous, and discrete in 

nature. [2,4,18,19] It is possible to solve 

problems in linear programming, quadratic 

programming, integer programming, nonlinear 

optimization, systems of dynamic nonlinear 

equations, and multi-objective optimization, 

among other areas of mathematics. The 

platform has the ability to find optimal 

solutions, perform tradeoff analyses, balance 

multiple design alternatives, and incorporate 

optimization methods into external modeling 

and analysis software, among other capabilities. 

Under the terms of the MIT license, it is 

available for free for both academic and 

commercial purposes. 

 

5. Application Modes  

        This function is used in the minimum and 

optimal control of the time of arrival of cars, 

planes, mushrooms, and space vehicles to their 

destinations, as well as in the reduction of the 

launch time of missiles, the reduction of the 

speed of chemical and physical reactions, as 

well as the reduction of the time of temperature 

rise in nuclear reactions, among other life-

sustaining operations. 

 

 

6. Numerical Results in new math model 

Applying the new approach from the previous 

objective function, we get the optimal time to 

solve the problem, as shown in Figure (3,4) and 

Table (1,2): 

 scaled unscaled 

Objective 4.006959294250

8189e+02 

2.003479647125

4094e+03 

Dual 

infeasibilit

y 

1.815781957979

1169e-10 

9.078909789895

5843e-10 

Constraint 

violation 

3.423785699396

8308e-10 

3.423785699396

8308e-10 

Compleme

ntarity 

7.136438922126

0054e-11 

3.568219461063

0024e-10 

Overall 

NLP error 

3.42378569939

68308e-10 

9.07890978989

55843e-10 

Table (1) 

Solution time  :    1.46450000000186      sec 

Objective         :     2003.47964712541 

 

Figure(3) 

We will change the restrictions for the same 

problem to obtain more satisfactory results in 

less time than before ( 
𝑑𝑥2

𝑑𝑡
 = 𝑡𝑓 cos(𝑥1

3 (𝑡)), 
𝑑𝑥3

𝑑𝑡
 

=  𝑡𝑓 sin(𝑥1
2 (𝑡))). 

 scaled unscaled 

Objective 4.003506711950

2833e+02 

2.001753355975

1416e+03 

Dual 

infeasibilit

y 

4.148488169875

2255e-10 

2.074244084937

6128e-09 
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Constraint 

violation 

3.224176481353

4246e-10 

3.224176481353

4246e-10 

Compleme

ntarity 

8.274247000910

1295e-11 

4.137123500455

0645e-10 

Overall 

NLP error 

4.14848816987

52255e-10 

2.07424408493

76128e-09 

Table(2) 

Solution time    :     1.05359999999928      sec 

Objective           :     2001.75335597514 

 

Figure (4) 

6.1 The Description 

When comparing the results in the first and 

second tables, we notice that the time and the 

value of the objective function in the second is 

better than the first, but the error rate is greater 

than in the first. 

As for the third and fourth figures, we notice 

that x_2 and x_3 go to the one, while the x_1 is 

in the form of a straight line between zero and 

one, then decreases in the third table and rises 

in the fourth table from its beginning 

 

Conclusion 

     For the purposes of this research, we 

developed a new mathematical model for any 

time-dependent function subject to certain 

restrictions in order to solve some 

contemporary problems in various sciences, by 

controlling the minimum and optimal time of 

completion, solving the problem using a new 

algorithm and code in the Python programming 

language, and we discovered that better results 

can be obtained. This function is used when the 

restrictions change in each case or when we 

have a problem that we will have to deal with 

in the future. 
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