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Abstract 

Twisted Edwards curve is a generalized of Edwards curves. These generalized curves are employed as 

an important tool to increase the security of encryption schemes. This work presents a new 

contribution of the 3-deminsion integer sub-decomposition (3-ISD) method to compute a scalar 

multiplication kP on the twisted Edwards curve 
,a dE defined over prime fields Fp that uses the 

efficiently computable endomorphisms of 
,a dE .The 3-ISD method depends on the randomization of 

generating the 3-ISD generators. The elements of these generators are vectors, their components are 

chosen from the range [1, p-1], where p is a prime number. In each vector, the elements are relatively 

prime to each other. Using the 3-ISD generators, a scalar t in [1, n-1] can be decomposed into t1, t2 

and t3 with max
1 2 3{ , , } ,t t t n where n is a prime order of a point P that lies on 

,a dE .These scalars, 

namely t1, t2 and t3, are sub-decomposed again into sub-scalars t11, t12 , t13, t21 , t22, t23 and  t31, t32 , 

t33The scalar multiplication tP using the 3-ISD method is computed by 

( )

11 12 1 13 2 21 22 1 23 2

31 32 1 33 2
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23 2 32 1 33 2

( ) ( ) ( ) ( )
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  + + + + + +
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where 

' ' ' ' '' '' '' ''

1 1 2 2 1 1 2 2( ) , ( ) , ( ) , ( )P P P P P P P P       = = = = and ''' ''' ''' '''

1 1 2 2( ) , ( )P P P P   = = are six efficiently 

computable endomorphisms of Edwards curve 
dE defined over Fp. . On the 3-ISD method, fast 

computations are determined based on the randomized generating of the 3-ISD generators in 

comparison with the previous version that is depended on the 2-ISD generators. In comparison with 

the 2-ISD computation method to compute tP, the 3-ISD method considers as more secure 

communications using the twisted Edwards curve cryptography. 
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1. INTRODUCTION  

Several mathematicians over a hundred years 

studied the elliptic curves [1]. They used to 

solve a various range of mathematical 

problems. Edwards curves are a family of 

elliptic curves which are also used for 

cryptographic schemes. These curves are 

defined on different fields, especially over 

finite fields. They are studied for their 

mathematical properties and they are used for 

security measures as well [2].  
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    In 2007, Harold M. Edwards [3] presented a 

normal form  x2 + y2 = a2 + a2x2y2 for elliptic 

curves. That allowed giving the addition law. 

On the elliptic curve also, the j-invariant is 

defined and the transcendental functions x(t) 

and y(t) that parameterize are determined. As 

well as, In 2007, Daniel J. Bernstein and Tanja 

Lange [4] presented the inverted Edwards 

coordinates (X:Y:Z) which correspond to an 

affine point (X/Z,Y/Z) on an Edwards curve. 

On the inverted Edwards coordinates, they 

presented the addition, doubling and tripling 

formulas. These formulas are strongly unified 

even are not complete. Also in 2007, Daniel J. 

Bernstein, Tanja Lange, [5] gave the fast 

formulas for Edwards curve group operations. 

The different elliptic curve forms and different 

coordinate systems, an extensive comparison of 

the operations which are doubling, mixed 

addition, non-mixed addition, and unified 

addition is discussed. As well, a higher-level 

operation such as multi-scalar multiplication is 

explained. In the same year, Daniel J. Bernstein 

and Tanja Lange [6], presented the answers that 

compared to the previous analyses that 

identified the faster scalar-multiplication 

methods. And which one is more optimized 

that is covered a wide range. 

      In 2008, Daniel J. Bernstein et al. [7] 

generalized the Edwards curves Ed into twisted 

Edwards curves  which are more defined curves 

over finite fields. They also presented the fast 

formulas for  in the projective and inverted 

coordinates. Their study showed the 

computations using the s ave time in 

comparison with elliptic curves. Also, in the 

same year, Daniel J. Bernstein et al. [8] 

presented an addition formula that is defined 

for all points on the binary elliptic curves. Their 

work also introduced the cost of doubling the 

formula for these curves. In 2011, D.J. 

Bernstein and T. Lange [9], presented their 

study to cover the Edwards curves. Two 

addition laws for points P1 and P2 to compute 

the sum P1 + P2 are presented. 

      In 2013, Ruma Ajeena and H. Kamarulhaili 

[10] proposed an approach called the integer 

sub-decomposition (ISD) method for 

computing the scalar multiplication kP on an 

elliptic curve E. This approach uses two fast 

endomorphisms ψ1 and ψ2 of E over prime 

field Fp. And also see other works in 2014 and 

2015 [11,12]. Also Emilie Menard Barnard 

[13] in 2015 presented a comparison on the 

Edwards curves, twisted Edwards curves  and 

Montgomery curves. As well, this work 

discussed the application of the EdDSA of   

    In 2016, Srinivasa R. S. Rao [14], presented 

a differential addition formula on Generalized 

Edwards’ Curves that is proposed by Justus and 

Loebenberger at IWSEC 2010 [15]. Their work 

introduced an efficient affine differential 

addition formula of a proposed model on the 

Binary Edwards Curves by Wu, Tang, and 

Feng at INDOCRYPT 2012 [16]. A point 

doubling algorithm on  is provided with 

different projective coordinates. 

    In 2018, Zhengbing Hu et al. [17] 

determined an increased performance of the 

elliptic curve digital signature algorithms over 

binary fields. Their study showed that the 

complexity of Edwards curves group operations 

is less than in comparing with the elliptic 

curves. The digital signature computations 

using the Edwards curves are performed 

efficiently and in a more secure way.  

    In 2019, Maher Boudabra and 

Abberrahmane Nitaj [18] presented the 

properties of  on a ring Z/nZ, where n = prqs is 

a prime power RSA modulus. They proposed a 

scheme and determined its efficiency and 

security. In 2020, R. Skuratovskii and V. 

Osadchyy [19], constructed a method to count 

the order of an Edwards curve Ed over a finite 

field. It is possible to apply this method to 

determine the order of elliptic curves according 

to the birationality equivalence between them. 

On the Montgomery curve and Ed, a birational 

isomorphism is also constructed in this work. 

In this work, an alternative version of the ISD 

method for computing a scalar multiplication is 

proposed. This version is applied on Edwards 

curves defined over a prime field and uses 3-

dimension of the ISD generators that are 

generated randomly.  The computations using 

the 3-ISD are fast as compare with the original 

one as proposed in [10,11,12] and it considers 

as a more secure way for Edwards curve 

cryptography. 



1991  Journal of Positive School Psychology  

    The outline of this work consists of Section 

2, which shows the basic facts on the Edwards 

curves, how to sum two points lie on it and 

some theorems to determine the order of this 

curve. In Section 3, the fuzziness of the DL 

encryption schemes is explained. In section 4, 

some small computational results are discussed. 

In section 5, the security considerations are 

determined on the fuzziness DL encryption 

schemes. Finally, Section 6 draws the 

conclusions. 

 

II. BASIC FACTS ON THE 

EDWARDS CURVES  

Suppose K is a non-binary finite field. An 

Edwards curve [7] defined over K is a curve 

that takes the following formula 

2 2 2 2: 1 ,dE x y d x y+ = +  where d ∈ K \ {0, 1}.           

(1)                                                  

Let P = (x1,y1) and Q = (x2,y2) be two points on 

Ed. The addition point P + Q is computed by 

For addition point, the identity element is a 

point OE = (0,1). The inverse point –P of a 

point P = (x1, y1) is defined by –P = (-x1, y1). 

Some special orders of the points (0, −1) which 

has order 2 and (1, 0), (−1, 0) have order 4. The 

formula of addition point that is defined in 

Equation (2) is known as strongly unified. This 

return to the reason that the possibility using it 

for computing the double point as well. 

Another attractive point that increases the 

motivation to work with the Edwards and 

twisted Edwards curves is the completeness of 

the addition point law when d is a non-square 

in K. This means that the addition point law 

can be computed for all points lie on Ed and  . 

    For instance, consider the Edwards curve 

E3: x2+y2 = 1+7x2y2 (mod 11).    (3) 

The technique to compute all point that 

satisfying the curve is as follows.  First, a 

square of the elements 0, 1, 2, 3, …, p-1 =10 

are computed with the prime field F11.   

Equation (3) of Edwards curve can be rewritten 

by 

E3:
2

2

2

1

1 3

x
y

x

−
=

−
 (mod 11). 

7 11( ) {(0,1), (0,10), (1,0), (2,4), (2,7), (3,3), (3,8), (4,2), (4,9),

(7,2), (7,9), (8,3), (8,8), (9,4), (9,7), (10,0)}

E F =

 With another prime number p =13 and d equal 

to 2, it is easy to define the Edwards curve Ed 

by 

2 2 2 2

2 : 1 2 (mod13).E x y x y+ = +  

The set of points which lie on E2 is given by 

2 13( ) {(0,1),(0,12),(1,0),(4,4),(4,9),(9,4),(9,9),(12,0)}.E F =

The point (2, 4) lies on Ed. The doubling point 

2P can be computed as follows.  

If P = (2, 4) then 2P = ( x3, y3), where 

1 1

3 2 2

1 1

2x y
x

x y
=

+
and

2 2

1 1

3 2 2

1 12

y x
y

x y

−
=

− −
. 

So,  

1 1

3 2 2 2 2

1 1

2 2.(4).(2)
3

(4) (2)

x y
x

x y
= = =

+ +
and

2 2 2 2

1 1

3 2 2 2 2

1 1

(4) .(2)
3.

2 2 (4) (2)

y x
y

x y

− −
= = =

− − − −
 

The point addition of the points (2, 4) and (3, 3) 

is computed by 

(2, 4) + (3, 3) = (x3, y3), 

where 

3

2.(3) 3.(4)
4

1 7.(2).(3).(4).(3)
x

+
= =

+
 and 

3

4.(3) (2).(3)
2.

1 7.(2).(3).(4).(3)
y

−
= =

−
 

Theorem 1. If p ≡ 3(mod 4) is a prime and the 

following condition of supersingular 

 

1

2
2

1

0 2

( ) 0(mod ),

p

j j

p

j

C d p

−

−

=

                     (4)                                                                       

( )
2

1 2 2 1 1 2 1 2

1 1 2

1 2 1 2 1 2 1 2

( , ) ( , ) , 2
1 1

x y x y y y x x
x y x y

d x x y y d x x y y

 + −
+ =  

+ − 
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is true then the orders of the curves x2  + y2 =1+ 

dx2y2 and  x2 + y2 = 1 + d-1 x2y2 over Fp are 

equal to  

1 , 1,

# ( )

3 , 1,

d p

d
p with

p
E F

d
p with

p

  
+ = −  

  
= 

 
− = 

 

                   (5)                                                                     

where 
d

p

 
 
 

is a Legendre symbol, where a 

Legendre symbol is defined by 

   

1 mod ,

1 mod ,

0 | .

if d is a quadratic residue ulo p
d

if d is a quadratic nonresidue ulo p
p

if p d


  

= − 
  



                                    

with p be an odd prime [19]. 

Theorem 2. (Properties the order of the 

Edwards curves [19]).  

• If 1,
d

p

 
= 

 
 then the orders #Ed (Fp) 

= #Ed-1 (Fp). 

• If 1
d

p

 
= − 

 
, then Ed and Ed−1 are 

pair of twisted Edwards. In the 

other words, the orders of curves 

Ed and Ed−1 satisfy 

 # Ed (Fp) + # Ed−1 (Fp) = 2p + 2. 

Now, the twisted Edwards curve over the field 

K, with char(K) ≠ 2 is defined  

       
,a dE :ax2 + y 2 = 1 + d x2 y 2          (6)                                             

 where a and d are non-zero elements and a ≠ 

d.  The twisted Edwards curve 
,( )a dE is an 

Edwards curve Ed with a = 1. Suppose P = (x, 

y) lies on 
,a dE .Since the 

,a dE is an Ed, so the 

identity point is (0,1) which means that (x, y) + 

(0,1) = (x, y), for all point P = (x, y) lies on 
,a dE

.The inverse of P = (x, y) is also defined by –P 

= (-x, y).  The sum point P+Q for two points P 

= (x1, y1) and Q = (x2, y2) which are lying on 

,a dE is defined by  

1 2 2 1 1 2 1 2

1 2 1 2 1 2 1 2

,
1 1

x y x y y y ax x
P Q

dx x y y dx x y y

 + −
+ =  

+ − 
   (7)   

The sum P + Q is also a point in twisted 

Edwards curve 
,a dE  which is defined over a 

prime field Fp. Whereas, the law of a doubling 

point 2P = (x3, y 3) can be derived from addition 

point law by  

1 1

3 2 2

1 1

2x y
x

a x y
=

+
and

2 2

1 1

3 2 2

1 12

y ax
y

ax y

−
=

− −
.      

(8)                                   

 

For example, if
,a dE : 3x2 + y2 = 1 + 7x2y2 is 

defined over F11. The set of points which lie on 

,a dE is given by 

3,7 11( ) {(0,1), (0,10), (1,2), (1,9), (2,0), (4,5), (4,6), (7,5),

(7,6), (9,0), (10,2), (10,9)}

E F =

The point (1, 9) lies on
,a dE . The doubling point 

2P can be computed by 

If P = (1, 9) then 2P = ( x3, y3), where 

1 1

3 2 2 2 2

1 1

2 2.(1).(9)
1

3.(1) (9)

x y
x

a x y
= = =

+ +
and 

2 2 2 2

1 1

3 2 2 2 2

1 1

(9) 3.(1)
2.

2 2 3.(1) (9)

y a x
y

a x y

− −
= = =

− − − −
 

 

So, (x3, y3) = (1, 2) belongs to 
3,7 11( ).E F  The 

point addition of the points (7, 5) and (10, 2) is 

computed as 

(7, 5) + (10, 2) = (x3, y3), where 
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3

7.(2) 10.(5)
7

1 7.(7).(5).(10).(2)
x

+
= =

+
and

3

2.(5) 3.(7).(10)
6.

1 7.(7).(5).(10).(2)
y

−
= =

−
 

 

III. The 3-Dimension of the ISD method 

for Twisted Edwards Scalar 

multiplication 

        Suppose three-dimension vectors v1, v2   

and v3 are chosen randomly from the range [1, 

p-1]. Each component on each vector is 

relatively prime to other components in the 

same vector, namely the  gcd (a i, b j ,ci) = 1 in 

the vector for 1,2,3i = . These vectors form the 

first 3-ISD generator {v1, v2, v3}, where v1 = 

(a1,b1,c1), v2 = (a2,b2,c2) and v3 = (a3,b3,c3). Let 

k be a scalar lies within the range [1, n-1], 

where n is a prime order of a point P which lies 

on twisted Edwards curve 
,a dE defined over 

prime field Fp. Based on 3-dimensions of the 

coordinates of the vectors that form the first 

generator, a scalar t can be decomposed into 

two scalars t1 and t2 such that 

1 2 1 3 2 (mod )t t t t n  + +   with max 

1 2 3{ , , } ,t t t n
                      

(9)                                                                                                  

where t1 , t2and t3 are computed by 

1 1 1 2 2 3 3 2 1 1 2 2 3 3,t t d a d a d a t t d b d b d b= − − − = − − −

and
3 1 1 2 2 3 3t d c d c d c= + +  .                         (10) 

  so, the parameters   

1 3 2 2/ , /d b t n d b t n= −  =    and  
3 1 / .d b t n=                                                     

Now, a random selection of nine vectors has 

been done. These vectors are 

' ' ' ' ' ' ' ' ' ' ' '

1 1 1 1 2 2 2 2 3 3 3 3

'' '' '' '' '' '' '' '' '' '' '' ''

1 1 1 1 2 2 2 2 3 3 3 3

( , , ), ( , , ), ( , , ),

( , , ), ( , , ) , ( , , )

v a b c v a b c v a b c

v a b c v a b c v a b c

= = =

= = =
 

and
 

''' ''' ''' ''' ''' ''' ''' ''' ''' ''' ''' '''

1 1 1 1 2 2 2 2 3 3 3 3( , , ), ( , , ), ( , , )v a b c v a b c v a b c= = =  

that form the ISD generators 

{v'1,v'2,v'3},{v''1,v''2,v''3}.  and  1 2 3
ˆ ˆ ˆ, , .v v v The 

scalars t1, t2 and t3 will be sub-decomposed 

again into new sub-scalars t11, t12 , t13, t21 , t22, 

t23 and  t31, t32 , t33 respectively. In the other 

words, the scalars t1 , t2 and t3 are written by  

' '

1 11 12 1 13 2 (mod ),t t t t n  + +   

'' ''

2 21 22 1 23 2 (mod )t t t t n  + +  and  
       

3 31 32 1 33 2
ˆ ˆ (mod).t t t t  + +                               

(11)                                                                                                      

where               

' ' ' ' ' '

11 1 1 1 2 2 3 3

' ' ' ' ' '

12 11 1 1 2 2 3 3

' ' ' ' ' '

13 1 1 2 2 3 3

(mod ),

(mod ),

(mod )

t t d a d a d a n

t t d b d b d b n

t d c d c d c n

 − − −

 − − −

 + +

  

21 2 1 1 2 2 3 3

22 21 1 1 2 2 3 3

23 1 1 2 2 3 3

(mod ),

(mod ),

(mod )

t t d a d a d a n

t t d b d b d b n

t d c d c d c n

          − − −

          − − −

          + +

           

(12)                       

and 

31 3 1 1 2 2 3 3

32 31 1 1 2 2 3 3

33 1 1 2 2 3 3

ˆ ˆ ˆˆ ˆ ˆ (mod ),

ˆ ˆ ˆ ˆ ˆ ˆ (mod ),

ˆ ˆ ˆˆ ˆ ˆ (mod )

t t d a d a d a n

t t d b d b d b n

t d c d c d c n

 − − −

 − − −

 + +

          (13) 

with max 11 12 13 21 22 23{ , , } ,{ , , }t t t n t t t n   

and 31 32 33max{ , , } .t t t n  So, the scalar t can 

be written by 

      

' ' '' ''

11 12 1 13 2 21 22 1 23 2 31

32 1 33 2
ˆ ˆ (mod ).

t t t t t t t t

t t n

   

 

 + + + + + +

+ +
         (14)                                                   

The scalar multiplication tP using the 3-ISD 

method is computed by 

( )

11 12 1 13 2 21 22 1 23 2

31 32 1 33 2

11 21 31 12 1 13 2 22 1

23 2 32 1 33 2

( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

tP t P t P t P t P t P t P

t P t P t P

t t t P t P t P t P

t P t P t P

   

 

  

  

    + + + + +

+ + +

  + + + + + +

 + +

where 
' ' ' ' '' '' '' ''

1 1 2 2 1 1 2 2( ) , ( ) , ( ) , ( )P P P P P P P P       = = = =
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and ''' ''' ''' '''

1 1 2 2( ) , ( )P P P P   = = are six efficiently 

computable endomorphisms of Edwards curve 

dE defined over Fp. 

 

IV. COMPUTATIONAL results of the 3-

ISD method  

    With a prime number p = 1171,  suppose v1= 

(71, 97, 31), v2= (79, 28, 91) and v3= (91, 71, 

55) are three vectors are chosen randomly. The 

elements on each vector are relative prime to 

each other. So, the first generator of 3-ISD 

method Is {v1,v2,v3}. Suppose 142 [1,148]t =   

1 3

2 2

/ (71)142 /149 68,

/ (28)142 /149 27

d b t n

d b t n

= −  = −  = −

=   =   =
and 

3 1 / (97)142 /149 92.d b t n=   =  =  

can be decomposed into scalars t1 , t2 and t3 

such that  

1 1 1 2 2 3 3

2 1 1 1 2 2 3 3

(mod ) 127(mod149),

(mod ) 62(mod149),

t t a d a d a d n

t t b d b d b d n

 − − − 

 − − − 
  

and
 3 1 1 2 2 3 3 (mod ) 102(mod149),t d c d c d c n + +   

where  max 127,62,102 149 12.20.n = =

Now, others nine vectors are chosen randomly 

to  general the 3-IDS generators
' ' ' '' '' ''

1 2 3 1 2 3{ , , },{ , , },v v v v v v and 
1 2 3
ˆ ˆ ˆ{ , , },v v v  where 

 
' ' '

1 2 3

'' '' ''

1 2 3

(35,18,23), (30,44,39), (21,64,16),

(35,18,19), (31,44,41), (21,64,11).

v v v

v v v

= = =

= = =
 

and 

1 2 3
ˆ ˆ ˆ(59,10,23), (21,44,41), (41,64,12)v v v= = =   

Using these generators, one can sub-decompose 

the scalars t1, t2 and t3 into t11, t12 , t13, t21, t22 , 

t23, and t31, t32 , t33 respectively such that 

1 11

' '

12 1 13 2

'' ''

2 21 22 1 23 2

(mod ) 1 ( 2)(2) 10(13)(mod149),

(mod ) 4 ( 5)(2) 4(17) (mod149).

t t t t n

t t t t n

 

 

 + +  + − +

 + +  + − +

and
 

3 31 32 1 33 2
ˆ ˆ (mod ) ( 7) 6(4) 6(39)(mod149).t t t t n  + +  − + +

Now, a scalar multiplication tP using the 3-ISD 

method is computed by  

where  

( )

11 12 1 13 2 21 22 1 23 2

31 32 1 33 2

11 21 31 12 1 13 2 22 1

23 2 32 1 33 2

( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

tP t P t P t P t P t P t P

t P t P t P

t t t P t P t P t P

t P t P t P

   

 

  

  

    + + + + +

+ + +

  + + + + + +

 + +

' ' ' ' '' '' '' ''

1 1 2 2 1 1 2 2( ) , ( ) , ( ) , ( )P P P P P P P P       = = = =

and 
1 1 2 2

ˆ ˆˆ ˆ( ) , ( )P P P P   = = are six efficiently 

computable  endomorphisms that are pre-

computed by 

' '

1 1

' '

2 2

'' ''

1 1

'' ''

2 2

( ) 2(1169,3) (64,644),

( ) 13(1169,3) (907,469),

( ) 2(1169,3) (64,644),

( ) 17(1169,3) (231,84)

P P

P P

P P

P P

 

 

 

 

= = =

= = =

= = =

= = =

 

1 1

2 2

ˆˆ ( ) 4(1169,3) (957,745),

ˆˆ ( ) 39(1169,3) (1103,423).

P P

P P

 

 

= = =

= = =
 

The computation of 
    

' ' '' ''

11 12 1 13 2 21 22 1 23 2, ( ), ( ), , ( ), ( )t P t P t P t P t P t P     

and 
31 32 1 33 2

ˆ ˆ, ( ), ( )t P t P t P  are 

11

'

12 1

'

13 2

1(1169,3) (1169,3),

( ) ( 2)(64,644) (214,745),

( ) 10(907,469) (596,282)

t p

t p

t p





= =

= − =

= =

21

''

22 1

''

23 2

4(1169,3) (957,745),

( ) 5(589,896) (582,896),

( ) 4(316,255) (231,84)

t P

t P

t P





= =

= − =

= =

 

and  

31

32 1

33 2

7(1169,3) (546,163),

ˆ ( ) 6(957,745) (386,71),

ˆ ( ) 6(1103,423) (119,1051)

t P

t P

t P





= − =

= =

= =

 

Then, the ISD scalar multiplication can be 

computed by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1169,  3 214,  745 596,  282 957,  745 582,  896

231,  84 546,  163 386,  71 119,  1051

   546,  163

tP = + + + + +

+ + +

=

 Some computational results are seen in Table 

(1). 
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TABLE 1. Small experimental results of the Twisted Edwards of the  3-ISD method for computing 

p
 

( ), ,a dE a d  n '

1  '

2  ''

1  ''

2  
1̂  

2̂  3-ISD generators t 

 

1867 

 

( )110,2  

 

151 

 

8 

 

131 

 

5 

 

66 

 

6 

 

5 
1 2 3

1 2 3

1 2 3

{ (46,23,25), (36,44,39), (56,62,19)},

{ (11,17,25), (26,11,39), (59,60,19)},

ˆ ˆ ˆ{ (13,10,25), (11,15,35), (58,60,17)}.

v v v

v v v

v v v

  = = =

  = = =

= = =

 

 

138 

 

2011 

 

( )64,2  

 

163 

 

8 

 

73 

 

3 

 

68 

 

32 

 

4 
1 2 3

1 2 3

1 2 3

{ (19,11,22), (13,15,29), (10,61,12)},

{ (19,41,22), (13,15,28), (66,61,12)},

ˆ ˆ ˆ{ (19,40,22), (17,15,28), (58,56,13)}.

v v v

v v v

v v v

  = = =

  = = =

= = =

 

 

159 

 

2083 

 

(49,2)  

 

257 

 

10 

 

10 

 

32 

 

49 

 

4 

 

20 
1 2 3

1 2 3

1 2 3

{ (69,37,32), (57,25,28), (58,56,13)},

{ (22,37,32), (23,27,17), (20,18,13)},

ˆ ˆ ˆ{ (84,91,16), (25,42,33), (41,47,3)}.

v v v

v v v

v v v

  = = =

  = = =

= = =

 

 

256 

 

2251 

 

( )122,2  

 

139 

 

16 

 

132 

 

8 

 

33 

 

2 

 

2 
1 2 3

1 2 3

1 2 3

{ (49,65,29), (53,46,33), (66,7,3)},

{ (47,65,34), (53,46,31), (7,38,13)},

ˆ ˆ ˆ{ (17,5,43), (13,51,31), (16,38,13)}.

v v v

v v v

v v v

  = = =

  = = =

= = =

 

 

132 

 

7603 

 

( )141,5  

 

631 

 

172 

 

20 

 

188 

 

8 

 

128 

 

517 
1 2 3

1 2 3

1 2 3

{ (2,15,33), (59,5,19), (17,8,11)},

{ (116,15,33), (59,5,19), (17,8,13)},

ˆ ˆ ˆ{ (72,15,33), (59,5,18), (17,8,13)}.

v v v

v v v

v v v

  = = =

  = = =

= = =
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P = (x,  y)
 

11t  
12t  

13t  
21t  

22t  
23t  

31t  
23t  

33t  tP  

( )1864,1  140  2 6 4 3 -10 -3 -9 -3 8 ( )1180,1199  

( )9,1318  -6 9 5 -7 6 4 -6 -2 1 ( )1066,308  

( )13,1  295  -3 15 -4 8 4 1 -3 1 11 ( )2070,1295  

( )2, 890  7 3 9 3 6 2 5 6 3 ( )1092,2203  

( )4, 4221  21 8 5 17 5 9 9 -8 8 ( )2736,3320  

The original 2-ISD expression to compute  in 

comparison with the proposed version is 

derived based on two dimension of the ISD 

generators {v3, v4} and {v5, v6}, where v3, 

v4, v5 and v6 are vectors. These vectors are 

computed using the extended Euclidean 

algorithm. It can see more experimental results 

of 2-ISD method in [12,20]. 

 

V. THE EFFICIENCY AND 

SECURITY CONSIDERATIONS OF 

THE 3-ISD METHOD  

    In comparison with the original two-

dimension integer sub-decomposition (2-ISD) 

method [10,11,12] for computing tP on Ed over 

Fp, the 3-ISD version considers as a fast 

computation method, especially with the 

moderate and large values rather than to the 

previous version that is applied faster with the 

small values. On the other hand, the sub-

decomposition of a scalar t into the form that is 

given in Equation (15), where the sub-scalars 

t11, t12, t21 and t22 which are taken the 

expressions in Equations (13) and (14) are 

more complicated to recover the value of t from 

their sub-decomposition. This sub-

decomposition needs more and more 

computations to get the correct possibility to 

determine the correct choices of ai, bi and ci, 

for i =1,2,3, to determine the elements of the 3-

ISD method that help us to recover the values 

of t11, t12, t13, t21, t22, t23 and t31, t32, t33.  

     For instance, the probability to find the 

correct value of the element a1 is determined 

by 

1

# 1
.

# 1
a

the correct value
P

the possible outcomes p
= =

−
 

In the similar way, one needs the probability 

1/p-1 to find a2 as well as the probabilities of 

a3, b1, b2, b3, c1, c2 and c3. So, it is more 
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difficult to recover a scalar k from it is sub-

decomposition.  

 

CONCLUSIONS 

        This work proposes new version of three 

dimensions of integer sub-decomposition (3-

ISD) method to compute a scalar multiplication 

on twisted Edwards curves defined over the 

prime field that can be employed by any 

cryptographer to improve the twisted Edwards 

curve cryptosystems.  

    This version depended on creating the three 

dimension of the ISD generators 

{v'1,v'2,v'3},{v''1,v''2,v''3}  and  to sub-

decompose a scalar t. The 3-ISD method is 

used to speed up the computations with the 

moderate and large values of the parameters. 

The security is determined based on the 

complicated formulas of t11, t12, t13, t21, t22, 

t23 and t31, t32, t33 that form a scalar t. This 

scalar is a secret key in the Edwards curve 

cryptosystem that is difficult to get t from the 

sub-decomposition of it. Eve here needs to 

compute many cases to determine the elements 

of the 3-ISD generators reach up to p-1, where 

p is a (large) moderate prime number, and to 

get the correct probabilities. So, the 3-ISD 

method is more secure and suitable for 

Edwards curve cryptographic communications. 
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