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Abstract 

The focus of this study is the dynamics of interaction between commensal and host species in an 

aquatic ecological system with harvesting, and stochastic attributes. The progress and the stability of 

the system, as well as the dynamics of the commensal host relationship are examined. The stabilities 

at steady states are also examined. We discuss the possible harvesting strategies described by the 

various attributes. The possibility of existence of bio-economic equilibrium with optimal scheme is 

being discussed. We provided the analytical estimates of the population intensities of fluctuations by 

Fourier transform methods through stochastic perturbation. Some numerical simulations are also 

carried out to make lawful the analysis.  
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1. INTRODUCTION 

Ecology is the study of relationships between 

living organisms and their environment. 

Investigations in the discipline of theoretical 

ecology were initiated by Lotka [1] and by 

Volterra [2], several researchers contributed to 

the enlargement of this area of acquaintance 

has been expansively accounted in the 

dissertations of Meyer [3], Kushing [4], Paul 

colinvaux [5], Kapur [6,7] etc,. The biological 

dealings can be generally classified as Prey – 

predation, competition, commensalism, 

Ammensalism, Neutralism and so on.  

The present investigation is devoted to the 

analytical study of commensalism between two 

species. A two species Commensalism is an 

ecological relation ship between two species 

where one species derives a benefit from the 

other which does not get affected by it. S1   

may be referred as the commensal species 

while S2 the host. Some examples are Cattle 

Egret, Anemonetish, Barnacles etc.  

The host species (S2) supports the commensal 

species (S1) which has a natural death rate in 

spite of a support other than from S1. The 

commensal species (S1) is assumed to be 

constitutionally so weak that it would not 

flourish, in fact it declines in spite of the 

support extended by the host (S2).The present 

model is characterized by a coupled pair of first 

order non-linear differential equations. In all 

three equilibrium points of the system are 

identified and the stability analysis is carried 

out. It is noticed that the state in which host 

survives and  the commensals are washed out 

and the co-existent state are stable states that 

too under the conditions, stated there in. The 
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first equilibrium state is unstable. The 

linearised perturbed equations are solved and 

the trajectories are illustrated. 

 

2. Basic Mathematical Model: 

Consider a three species prey-predator-

competitor model 

 1
1 1 11 1 12 2 1 1

N
N a N N q E

dt
 


= − − + −   (2.1) 

 2
2 2 22 2 2 2

N
N a N q E

dt



= − −    (2.2) 

where ( )1 1 ,N N x t= represents the biomass 

density of commensal species 1S , 

( )2 2 ,N N x t= represents the biomass density 

of host species 2S , x denotes the space 

variable t denotes the time variable. 
1

a  

represents the death rates of 1S ,
2

a  represents 

the natural growth rates of 2S  , 11   represents 

the rate of decrease of 1S  due to limitations of 

natural resources, 
12 : increase rate of the 

Commensal due to inhibition by the Host ,
 1q  

represents the catch ability coefficient of 1S

species, 2q  represents the catch ability 

coefficient of 2S species 1E  represents the 

effort applied to harvest the 1S species, 
2E  

represents the effort applied to harvest the 2S

species. We are assuming that
2 2 2 0a q E−  .  

 

3. Stability and equilibrium analysis: 

The model equations of the structure with   are 

symbolized as set of three non linear 

differential equations as follows: 

2

1 1 1 11 1 12 1 2 1 1 1N a N N N N q E N  = − − + −  

(3.1)                

2

2 2 2 22 2 2 2 2N a N N q E N = − −   (3.2) 

The possible equilibrium points are ( )1 0,0E , 

( )2 1 ,0E N 
, ( )3 20,E N 

and ( )4 1 2,E N N 
. 

Case (i): ( )1 0,0E : This equilibrium point 

always exist. 

Case (ii) : ( )2 1 ,0E N 
 (In the absence of host 

species): If 1N 
 is the positive solution of  

'

1 0N = , then  1 11 1 1 1(1/ )N a q E = − +  

provided 
1 1 1 0a q E+  . But this is not 

possible. Since all parameters are assumed to 

be positive, therefore, 1 1 1a q E+ never be 

negative. Hence this equilibrium point does not 

exist. 

Case(iii): ( )3 20,E N 
(In the absence of 

commensal species): If 2N 
 is the positive 

solution of  
'

2 0N = , then 

 2 22 2 2 2(1/ )N a q E = − − . This point is 

said to be positive, if 
2 2 2q E a  that is the 

product of the catchability coefficient and 

effort applied to harvest the host species must 

be greater than their natural growth rate. 

Case (iv): ( )4 1 2,E N N 
: (The interior 

equilibrium): If 1N 
and 2N 

 are positive 

solutions of
'

1 0N = and
'

2 0N = ,then

( ) 1 11 1 1 1 12 22 2 2 2(1/ ) ( ) ( / )N a q E a q E   = − − + −

, and ( )2 22 2 2 2(1/ )N a q E = −  . 1N 
is said 

to be positive, if 

12 2 2 2 22 1 1 1( ) ( )a q E a q E −  +  

 

4. Swot of Local Stability: 

To ascertain the local steadiness character of 

the interior equilibrium ( )2 1 2,E N N 
, we 

work out the variational matrix about 
2E  

( ) 11 1 12 1

1 2

22 2

,
0

N N
J N N

N

 



 



 −
=  

− 
                              

(4.1) 

The characteristic equation of the given 

ecological scheme at the interior equilibrium



411  Journal of Positive School Psychology  

( )4 1 2,E N N 
 is           

( )2

11 1 22 2 11 22 1 2 0N N N N        + + + =

           (4.2) 

The sum and product of roots of (4.2) are 

( )1 2 11 1 22 2 0N N    + = − +   and  

1 2 11 22 1 2 0N N     =   respectively. Hence 

the steady state is stable. ( )2 1 2,E N N 
is 

locally asymptotically stable. 

 

5. Testing of Global Stability: 

Theorem: The equilibrium point ( )2 1 2,E N N 
 

is globally asymptotically stable. 

Proof: Let us consider the subsequent 

Lyapunov function  

* * * * * *

1 2 1 1 1 1 1 1 2 2 2 2 2( , ) ( ) ln( / ) ( ) ln( / )V N N N N N N N l N N N N N   = − − + − −   

             (5.1)

   
where 1l is the positive constant. 

* *

1 1 1 2 2 2
1

1 2

( ) ( )N N dN N N dNdV
l

dt N dt N dt

   − −
= +   
   

     

   * * * * *

1 1 11 1 12 2 11 1 12 2 1 2 2 22 2 22 2( ) ( )
dV

N N N N N N l N N N N
dt

     = − − − + + − −

 

( ) ( )
2 2

* *12 12
11 1 1 1 22 2 2

2 2

dV
N N l N N

dt

 
 
   

 − − − − − −   
   

 

0
dV

dt
   provided    12

1 22 0
2

l


 −   

and 12
11 0

2


 −   

The equilibrium point ( )2 1 2,E N N 
  is 

globally asymptotically stable  

 

6. Bionomic equilibrium 

The bionomic equilibrium is not anything but 

which is the grouping of the perceptions of 

biological as well as economic equilibriums. A 

biological equilibrium is given by 1 0N  = ;

2 0N  = . The economic equilibrium is said to 

be accomplished when the total income 

acquired by selling the harvested biomass 

equals the total cost for the effort devoted to 

harvesting. Let
1c , 2c be harvesting cost per unit 

effort of the prey and predator respectively. Let 

1 1,p p  be price per unit biomass of the 

commensal and host respectively. 

Consequently, net income or financial rent at 

any time given by
1,2

i

i

M M
=

= .Where 

( )i i i i i iM p q N c E= −  are the net economic 

revenue for the commensal and host at any time 

t. The bionomic equilibrium 

( ) ( )( )1 2 1 2( ) , ( ) , ,N N E E   
 is given by the 

subsequent equations 

1 11 1 12 2 1 1 0a N N q E − − + − =

                                      

(6.1) 

2 22 2 2 2 0a N q E− − =    

     
                                                   

(6.2) 

( )
1,2

i i i i i

i

M p q N c E
=

= −  

                                                 

(6.3) 

With the intention of establishing the bionomic 

equilibrium we come across the subsequent 

cases. 

Case (a): If
1 1 1 1c p q N , 2 2 2 2c p q N  then the 

cost is greater than revenues for both the 

species and the whole system will be closed. 

Case (b):  If for the host, harvesting cost is 

greater than the revenue ( )2 2 2 2c p q N , and 

then harvesting of host is not practicable. 

Hence harvesting of commensal population 

remains operational ( )1 1 1 1c p q N .  Thus, 

when  2 0E =   and  ( )1 1 1 1c p q N  we have  
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( ) 1
1

1 1

c
N

p q
= , 

1
2 1 11 1 1

12 1 1

1
( )

c
N a q E

p q





 
= + + 

 
 

                         (6.4) 

Case (c):  If the cost is greater than the revenue 

in the commensal harvesting, then the 

commensal harvesting will be closed (i.e. 1E = 

0).Only host harvesting remains operational.  

( ) 2
2

2 2

c
N

p q
= ,     

( )1 2 2 2

22

1
( )N a q E


 = −   

                         (6.5) 

Case (iv):  If  
1 1 1 1c p q N  , 2 2 2 2c p q N , then  

the revenues for both the species being  

positive, then the whole system will be in 

operation. In this case   ( ) 1
1

1 1

c
N

p q
=            

(6.6)  

and                     ( ) 2
2

2 2

c
N

p q
=   

                          

(6.7)                                                                                       

Substitute (6.6) and (6.7) in (6.1), (6.2) we get                                      

( ) 1 2
1 1 11 12

1 1 1 2 2

1 c c
E a

q p q p q
 



 
= − − + 

 
 

                          

(6.8)                                 

( ) 2
2 2 22

2 2 2

1 c
E a

q p q




 
= − 

 
  

                          

(6.9)                                                             

( )1 0E

        if          

2 1
12 1 11

2 2 1 1

c c
a

p q p q
 

 
 + 
 

             

                     (6.10)   

( )2 0E

       if          2

2 22

2 2

c
a

p q
            

                         

(6.11)                                            

The Non-trivial Bionomic equilibrium point 

( ) ( )( )1 2 1 2( ) , ( ) , ,N N E E   
 exists, if (6.10) 

and (6.11) must hold. 

 

7. Analysis of environmental fluctuations: 

The primary idea that leads us to widen the 

deterministic model (2.1)-(2.2) to a stochastic 

identical part is that it is practical to imagine 

the open system as noisy surrounding. There 

are a number of ways in which the located 

‘noise’ may be included in the system (2.1)-

(2.2). This reminds that the environmental 

noise should be distinguished from internal 

noise, for which the variation over time is due. 

External noise may arise either from random 

fluctuations of one or more model parameters 

around some known mean values or from 

stochastic fluctuations of the population 

densities around some constant values. In this 

part, we work out the population intensities of 

fluctuations (variances) around the positive 

equilibrium 
4E due to noise, according to the 

method introduced by R.M.Nisbet and 

W.S.C.Gurney [8] in 1982. Later many authors 

[8-9] studied about the effects of environmental 

fluctuations of  various ecological models.Now 

we assume the presence of a randomly 

fluctuating driving force on the deterministic 

growth of the species 1S and 2S (commensal 

species with mortality rate and host species 

with intrinsic growth rate) at time t , so that the 

system (3.1)-(3.2) results in the stochastic 

system with ‘additive noise’ as follows: 

21
1 1 11 1 12 1 2 1 1 1 1 1( )

dN
a N N N N q E N t

dt
   = − − + − +

                         
(7.1) 

22
2 2 22 2 2 2 2 2 2 ( )

dN
a N N q E N t

dt
  = − − +

       
                                  

(7.2) 

where 
1 2,   are real constants and  

( )  1 2( ), ( )t t t  =  is a two dimensional 

Gaussian White noise process agreeable 

( ) 0; 1,2iE t i  = =  ; 

( ) ( ) ( ); 1, 2i j ijE t t t t i j      = − = =  . 
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where  ij  is the Kronecker symbol;   is the 

delta-dirac function. In this analysis, we focus 

on the dynamics of the model (7.1)-(7.2) at the 

equilibrium point only. So we compute the 

population variances around ( )4 1 2,E N N 
.Let 

*

1 1( ) ( ) ;N t u t S= + *

2 2( ) ( ) ;N t u t P= + then 

we centre the system (7.1)-(7.2) on 

( )4 1 2,E N N 
 and consider only the linear 

terms, so that we consider only the 

consequence of linear stochastic perturbations. 

Hence the model (7.1)-(7.2) reduces to the 

following linear system   

            

* *1
11 1 12 2 1 1

( )
( ) ( ) ( )

du t
u t S u t S t

dt
   = − + +                                                                

(7.3) 

            
*2

22 2 2 2

( )
( ) ( )

du t
u t P t

dt
  = − +

                                                                       

(7.4)                                   

 Taking the Fourier transform on both sides of 

(7.3) and (7.4) we get, 

( )* *

1 1 11 1 12 2( ) ( ) ( )i S u S u       = + −

                                 

(7.5) 

( )*

2 2 22 2( ) ( )i P u     = +   

                          

(7.6) 

The matrix form of (7.5) and (7.6) is  

( ) ( ) ( )M u   =                                     

(7.7) 

where  ( )
( ) ( )

( ) ( )

A B
M

C D

 


 

 
=  
 

 ;  

( ) 1

2

( )

( )

u
u

u






 
=  
 

 ;   ( )
( )

( )

1 1

2 2

  
 

  

 
=  
  

; 

* * *

11 12 22( ) ; ( ) ; ( ) 0; ( )A i S B S C D i P        = + = − = = +

                            (7.8) 

Hence the solution of (7.7) is given by  

( ) ( ) ( )
1

u M   
−

 =    

where 

( )
1

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

D B

M M
K M

C A

M M

 

 
 

 

 

−

 
− 

  = =   
− 

 

                                                            (7.9) 

we now describe the some of the fundamental 

results of random population function. If the 

function ( )Y t  has a zero mean value, then the 

fluctuation intensity (variance) of its 

components in the frequency interval 

 , d  +  is ( )YS d  , where ( )YS  is 

spectral density of Y  and is defined as  

( )
2

( ) limY
T

Y
S

T




→
=                                    

(7.10) 

If  Y  has a zero mean value, the inverse 

transform of ( )YS  is the auto covariance 

function  

( )
1

( )
2

i

Y YC S e d  




−

=     

                        

(7.11) 

The related variance of fluctuations in ( )Y t  is 

2 1
(0) ( )

2
Y Y YC S d  





−

= =                    

(7.12) 

and the auto correlation function is the 

normalized auto covariance 
( )

( )
(0)

Y
Y

Y

C
P

C


 =

         (7.13) 

For a Gaussian white noise process, it is 

( )
( ) ( )

ˆ
lim

ˆi j

i j

T

E
S

T
 

   


→+

 
 =  

( ) ( )
'

ˆ ˆ

2 2
' ( ) '

ˆ
ˆ ˆ

2 2

1
lim

ˆ

T T

i t t

i j
T

T T

E t t e dt dt
T

  − −

→+

− −

 =
    

ij=                                     

(7.14) 
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From (7.9), we have 

 ( ) ( ) ( )
2

1

; 1,2i ij j

j

u K i   
=

= =  

                                 (7.15) 

From (7.10) we have 

 ( ) ( )
2

2

1

; 1,2
iu j ij

j

S K i  
=

= =                                              

(7.16) 

Hence by (7.12) and (7.16), the intensities of 

fluctuations in the variable ; 1,2iu i =  are 

given by   
2

2
2

1

1
( ) ; 1,2

2iu j ij

j

K d i   




= −

= =    

                                                         

(7.17) 

and by (7.9), we obtain  

1

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

D B
d d

M M

 
    

  

 

− −

 
 

= + 
  
   

                            

2

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

A C
d d

M M

 
    

  

 

− −

 
 

= + 
  
 

                      (7.18) 

where ( ) ( ) ( )M R iI  = +   

                                                   

(7.19) 

Real part of  ( ) 2 * *

11 22( )M R S P    = = − +  

                                                         

(7.20) 

Imaginary part of 

( )2 * *

11 22( ) ( )M I S P    = = +  

                               (7.21)    

Finally from (7.8), we get 

 
2 2 2 22 * 2 * 2 2 * 2

11 12 22( ) ( ) ; ( ) ( ) ; ( ) 0; ( ) ( )A S B S C D P        = + = = = +

               (7.22) 

 
1

2 2 * 2 * 2

1 22 2 122 2

1 1
( ) ( )

2 ( ) ( )
u P S d

R I
      

  



−

   = + +  +  


                                  (7.23) 

 
2

2 2 * 2

1 112 2

1 1
( )

2 ( ) ( )
u S d

R I
    

  



−

   = +  +  


                                             (7.24) 

If we are interested in the dynamics of system 

(7.1)-(7.2) with either 1 0 =  or 2 0 =  then 

the population variances are   

1

* 2
2 2 12

2 2

( ) 1

2 ( ) ( )
u

S
d

R I

 
 

  



−

=
+ ; 

2

2 0u =  if  

1 0 =          (7.25)   

and  
1

2 2 * 21
222 2

1
( )

2 ( ) ( )
u P d

R I


   

  



−

 = + +

 ; 

2

2 2 * 21
112 2

1
( )

2 ( ) ( )
u S d

R I


   

  



−

 = + +

(7.26) if 2 0 = .                                  

The population variances given in (7.18) point 

out the stability of population for smaller 

values of mean square fluctuations, while the 

larger values of population variances indicate 

the instability of the populations. The integrals 

in (7.18) can be evaluated both analytically and 

numerically. 

 

8. Computer simulations: 

Evaluation of integrals in (7.18) is very 

complex, but it can establish numerically for 

diverse set of parameters. The three variances 

in (7.23-7.24) stand for the mean square 

fluctuations of the population. When the 

variances are very not as much of, it can be 

easily observed that the system is stable, 

otherwise unstable. We visualized these results 

in the computer simulation. The exclusive of 

numerical authentication of the outcomes in 

view of stochastic (fig: 1-5), are portrayed for 

the given set of parameters. 
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Figure (1) 

a1=3.5;a11=0.01;a12=0.5;q1=0.02;E1=25;omga=2.5; 
a2=1.75;a22=0.5;q2=0.02;E2=20;gama=1.75; 

 

Figure (2) 

a1=4.5;a11=0.1;a12=0.5;q1=0.02;E1=25;omga=2.5; 
a2=1.5;a22=0.05;q2=0.02;E2=20;gama=1.75; 

 

 
Figure (3) 

a1=1.5;a11=0.1;a12=1.5;q1=0.02;E1=25;omga=2.5; 
a2=1.5;a22=0.5;q2=0.2;E2=20;gama=1.75; 
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Figure (4) 

a1=1.5;a11=0.1;a12=1.5;q1=0.02;E1=25;omga=2.5; 
a2=1.5;a22=0.5;q2=0.2;E2=20;gama=1.75; 

        

Figure (5) 

a1=1.5;a11=0.1;a12=1.5;q1=0.02;E1=25;omga=1.5; 
a2=1.5;a22=0.5;q2=0.2;E2=20;gama=2.5; 
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