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Abstract 

        

Weighted distributions provide a unified approach to model formulation and data interpretation issues. 

In this paper, we present the  weighted Weibull-G ( WW-G) as a novel family of weighted distributions 

that may be used to solve problems in a variety of fields, including reliability, meta analysis, 

biomedicine, ecology, and others. Some statistical features that hold out of any baseline model are 

explained using general formulations. Four useful models are offered for the new family. Diverse 

density function shapes, such as symmetric, uni-modal, right skewed, U-shaped, or J-shaped, are 

represented, as well as different hazard rate shapes. The maximum likelihood estimators for family's 

parameters are derived. Monte Carlo simulations are used to examine the behavior of the estimators for 

one specific model, which is the WW-exponential. Finally, real data depicting the proportion of primary 

energy consumption produced from renewables in 75 country is used to demonstrate the flexibility of 

one model. Another real data analysis of global Carbon Dioxide (CO2) emissions per person in 2020 is 

taken into account in 211 country. The results of applications reveal that the weighted Weibull 

exponential distribution can, in reality, better match the data when compared to other competing 

distributions. 

 

Keywords: Weighed Weibull distribution; Order statistics; Rényi entropy; Maximum likelihood 

Estimation. 

 

1. Introduction 

 

Ordinary distributions are not always suitable 

to model and forecast real data in many 

scenarios. This is especially true in the fields of 

engineering, economics, biology, and 

environmental science. As a result, several 

researchers have devised a number of 

extensions or generalizations to improve the 

desired aspects of probability distributions. As 

a result, several studies have proposed 

extensions or generalizations to improve the 

desirable aspects of probability distributions. 

Several authors proposed some of the generated 

families of continuous distributions, our 

interest here with the transformed-transformer 

(T-X) family prepared by Alzaatreh et al. 

(2013), based on T-X family several generated 

families have been regarded, see for instance 

Bourguignon et al. (2014), Hassan and Hemeda 

(2016), Hassan and Elgarhy (2016 a, b), Hassan 

et al. (2017 a, b), Cordeiro et al. (2016, 2017),  

Haq and Elgarhy (2018), and Hassan and Nassr 

(2018, 2019), among others.  

 

Alzaatreh et al. (2013), proposed T-X family of 

distributions with the following cumulative 

distribution function (cdf) 

                                                                  
( (x))

0
( ) ( ) ,

W G

F x r t dt=                                                           

(1) 

where, ( )r t is the density function of a random 

variables T and
 W( ( ))G x  be a function of the 

cdf of any random variables 𝑋.  
 

The theory of weighted distributions 

(WDs) offers a collective access for the 

problems of model specification and data 

interpretation challenges. When samples can be 

taken from both the original and developed 

distributions, it provides a technique for fitting 

models to unknown weight functions. By 

altering the probabilities of the actual 

occurrence of events to get at a specification of 

the probabilities of those events as observed 

and recorded, weighted distributions take into 
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consideration the technique of ascertainment. 

For the improvement of accurate statistical 

models, weighted distributions appear 

frequently in research connected to reliability, 

analysis of family data, meta analysis, 

biomedicine, ecology, and other fields.  

       The concept of WDs was provided by 

Fisher (1934) and Rao (1965). Fisher (1934) 

studied how the methods of ascertainment can 

influence the form of the distribution of 

recorded observations, and Rao (1965) 

introduced and formulated it in general terms in 

connection with modelling statistical data when 

the usual practice of using standard 

distributions was found to be unsuitable. The 

probabilities of the events as observed and 

transcribed are modulated using weighted 

distributions.Since, a lot of essays on the issue 

have been published. Many authors have 

proposed and explored various WDs for diverse 

aims, for example; the reader can refer to Patil 

and Ord (1975, 1977);  Rao, (1985); Ghitany et 

al. (2011); Kersey and Oluyede, (2012);  Nasiru  

(2015), Ahmad et al. (2016); Sen et al. (2017); 

Abdul-Moniem  and Diab (2018) and Hassan et 

al. (2021). 

The Weibull distribution has gotten a lot of 

attention in the literature, due to its superiority 

over other distributions in simulating lifetime 

data. Nasiru (2015) introduced the weighted 

form of Weibull distribution with the following 

cdf  

 ( )
( )

WW ; , , 1 , , , 0.
t t

G t e t
   

     
− +

= −                                           

 (2) 

The associated probability density function (pdf) of the WW distribution is as follows 

 ( ) ( ) ( )1

WW ; , , 1 , , , , 0.
t t

g t t e t
           

− +−= +                                  

 (3) 

Nasiru (2015) examined a number of 

characteristics of the WW distribution and 

calculated model parameters. Furthermore, the 

WW distribution's utility was proved by 

applying it to a real-life dataset.  

 

   The paper's main goal is to propose a new 

family of distributions based on the WW 

distribution.The  WW-

G family is the name given to the new family 

and a comprehensive description of its 

mathematical features is given. In fact, the 

efficiency to model data with increasing, 

decreasing, unimodal, and U-shaped, or J-

shaped failure rates is the driving force behind 

the WW-G family. Furthermore, the versatility 

of one particular model is demonstrated 

through practical data analysis related to 

statistics in 2019, the share of primary energy 

consumption that comes from renewable 

technologies in 75 country. Note that this data 

is based on primary energy calculated by the 

‘substitution method’ which attempts to correct 

for the inefficiencies in fossil fuel production. 

We consider another practical data analysis 

representing the global CO2 emissions per 

person in 2020 in 211 country. Emissions of 

CO2 are from burning oil, coal, and gas for 

energy use, burning wood and waste materials, 

and from industrial processes such as cement 

production. This is leading to an increase in the 

earth's surface temperature and the related 

effects on the climate, sea level rise, and world 

agriculture. It has been demonstrated that the 

special model of this family produces useful 

results when compared to other models.  

  

Let ( ; ),G x  and ( ; )g x  be the baseline cdf and 

pdf, respectively, for a random variable X.  The 

cdf of the WW-G family are given by utilizing 

the T-X generator defined in (1) and using the 

WW distribution for 1 =  as below 

 

 

    

( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
; ;

1 1 ; ;1

WW-

0

; , , 1 e  1 e ,

G x G x
t G x G x

GF x t dt
  

 
        

− + − +−= + = −                                

(4) where, , ,  are scale and shape parameters respectively. Therefore, the pdf of the WW-G family 

is given by 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( 1) 1 ; ;1

WW- ; , , 1 ; ; ; e .
G x G x

Gf x g x G x G x
           

− + − +−= +                       

(5)  

▪ As a novel family, the weighted 

Rayleigh-G (WR-G) is obtained for 
2. =  

▪ As a result, we get a new family called 

the weighted exponential-G (WE-G) 

for 1. =   

Hereafter,  a random variable X has pdf (5), is 

denoted,  by 𝑋~ WW-G. 

The reliability function and hazard rate 

function, are respectively, given by 

( )
( ) ( ) ( )( )1 ; ;

WW- ; , , e ,
G x G x

GR x
  

  
− +

=  

and 

( ) ( ) ( ) ( ) ( )( )
( 1)1

WW- ; , , 1 ; ; 1 ; .Gh x g x G x G x
        

− +−= + −  

 

The following are the possible classifications for this publication. Section 2 derives some of the family's 

general statistical features. The maximum likelihood (ML) technique is used in Section 3 to estimate 

the parameters of the family. Section 4 looks at four new WW-G sub-models. In Section 5, a simulation 

study is conducted to estimate model parameters for one distribution. Section 6 investigates an 

illustration aim using real data. Finally, some closing notes are made throughout the article 

 

 

2. The WW-G Properties  

In this part, we derive ordinary and 

incomplete moments, quantile function, 

entropy measure, order statistics, and 

probability weighted moments (PWMs), 

among other properties of the WW-G family. 

 

 

2.1 Quantile Function 

Let 𝑋 denotes a random variable has the pdf (5), the quantile function; say Q(u)  of 𝑋 is given by: 

( )

1 1

1

WW-

1 1 1 1
ln 1 ln ,

1 1 1 1
GQ u G

u u

 

  

−

 
       = +       + − + −      
 

                                                     

where, 𝑢 is a uniform distribution on the 

interval (0,1) and G-1 is the inverse function of 

G(.), also, we get the median by inserting  u = 

0.5. 

 

2.2 A Valuable Representation  

 

The pdf and cdf representations for the WW-

G distribution are shown here. Since, the 

exponential expansion has been written as this: 

( )

0

1
.

!

i i

ax i

i

a
e x

i


−

=

−
=                                                          (6) 

The pdf of the WW-G distribution is then obtained by using the exponential expansion (6) in (5) 

      

( )
( )

( ) ( ) ( )( )
( )

( )( )
( )1 1 1 ( 1 1)

WW-

0

1
; 1 ; ; 1 ; ,

!

i
i i i

G

i

f x g x G x G x
i

     


+ + − − + +

=

−
 = + −                         

(7)         

where, ( , , ).  = Since the generalized binomial theorem is already known, 

( )
0

1
1  .j

j

j
z z

j

 
−

=

+ − 
− =  

 
                                                     (8) 

Hence, by using(8)  in (7), the WW-G pdf can be written as follows 
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( ) ( ) ( )( )
( )1 1

WW- ,

, 0

; ; ; ,
j i

G i j

i j

f x w g x G x


 


+ + −

=

 =                                          (9) 

where, 

( )
( )

( )1

,

1 1
1

!

i
i

i j

i j
w

i j

 
 

+−  + + 
= +  

 
. 

Further, an expansion for ( )WW- ;
h

GF x    is derived, for ℎ is integer, again, the exponential expansion 

and the binomial expansion is worked out. 

( ) ( )WW-

0

; ; ,
h m z

G z

z

F x S G x





+

=

 =                                                (10) 

where, 

( )
( )

0 0

11
1 .

!

k m
h

m
m

z

k m

h m z
S k

k zm






+


= =

+ −−   
= +   

  


 
 

 

2.3 Probability Weighted Moments 

The PWM is another method for obtaining the 

moments of statistical distributions whose 

inverse form cannot be represented simply. The 

PWM, denoted by
, ,r s  is calculated for a 

random variable X using pdf (9) and cdf (10) 

                         

, [ ( ) ] ( )( ( )) .r s r s

r s E X F x x f x F x dx


−

= =                                                                     

(11) 

The PWM of WW-G is produced by replacing h with s and substituting(9) and (10) in (11) 

( )1 1

, ,

, , 0

( ; )(G( ; )) .
z j m ir

r s z i j

i j z

s w x g x x dx


  
 

+ + + + −

=−

=   

Then,  

( ), , , 1 1
, , 0

.r s z i j r z j m i
i j z

s w


 


+ + + + −
=

=   

2.4 Moments 

In general, we must always remember the 

importance of moments in any statistical study, 

especially in applied fields. Moments, for 

example, can be used to investigate important 

aspects of a distribution such as tendency, 

dispersion, skewness, and kurtosis. If X has the 

pdf (9), we can calculate the rth moment as 

follows: 

( )1 1

,

, 0

[ ] ( ; )( ( ; )) .
j ir r

r i j

i j

E X w x g x G x dx


  
 

+ + −

=−

 = =   

Then, 

( ), , 1 1
, 0

.r i j r j i
i j

w


 


+ + −
=

 =   

For a random variable 𝑋 it is known that, the moment generating function is defined as 

( ), , 1 1
, , 00

( ) .
! !

r r

X r i j r j i
r i jr

t t
M t w

r r


 
 

+ + −
==

= =   

2.5 Order Statistics 

Many fields of statistics, including as reliability 

and life testing, have extensively used order 

statistics. Let X1, X2,…,Xn with their 

corresponding continuous distribution function 

be independent and identically distributed 

(i.i.d) random variables. Allow an ordered 

random sample X(1), X(2),…,X(n) from a 

population of size n to be generated. The sth 

order statistic's pdf is defined as follows: 
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( ) 1

:

0

( ) ( , ) ( ) 1 ( ) ,
n s

v v s

s n

v

n s
f x D n s f x F x

v

−
+ −

=

− 
= −  

 
                                    (12)

 
where, ( , ) ! ( )!( 1)!D n s n n s s= − − . The pdf of the sth order statistic for the WW-G family is obtained 

by replacing h with 1v s+ − and substituting (9) and(10) in (12). 

                   

( )1 1

: ,

, , 00

( ; )
( ) G( ; ) ,

( , 1)

n s
z j m i

s n z v

i j zv

g x
f x p x

B s n s




− 
+ + + + −

==

=
− +

                                           (13) 

where  g(.) and G(.) are the pdf and cdf of any baseline distribution, 

respectively. 

Further, the 𝑟th  moment of 𝑠th order statistics for WW-G family is defined by: 

( )1 1

: z,

, , 00

1
( ) ( ; )G( ; ) .

( , 1)

n s
z j m ir r

s n v

i j zv

E X p x g x x dx
B s n s


 

− 
+ + + + −

== −

=
− +

   

Then, 

( ): z, 1 1
, , 00

1
( ) .

( , 1)

n s
r

s n v z j m i
i j zv

E X p
B s n s




− 

+ + + + −
==

=
− +

  

 

3. Parameter Estimation 

On the basis of complete samples, this 

section discusses ML estimators of unknown 

parameters for the WW-G family of 

distributions. Let X1, X2,..., Xn represent the 

observed values from the WW-G family with a 

given set of parameters  The 

log-likelihood function for parameter vector is 

obtained as follows 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

1 1

1 1

ln ( ) ln ln 1 ln ; + 1 ln ;

         1 ln 1 ; 1 ; ; .

n n

i i

i i

n n

i i

i i

L n n g x G x

G x G x G x





    

    

= =

= =

 = + + + −

− + − − +

 

 
 

The elements of the score function   are given by 

( ) ( )( )
1

1

1

; ; ,
1

n

i

i

n
U G x G x




 


  



−
−

=

= −
+

  

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

1 1 1

1

ln
ln ; ln 1 ; ln ; ;

1

1 ; ; ln ; ; ,

n n n

i i i

i i i

n

i i

i

n n
U G x G x G x G x

G x G x G x G x




 



 
     

 

    

= = =

=

= + + − − −
+

− +

  


 

and, 

( )

( )
( )

( )

( )
( )

( )

( )

( )
( ) ( )( )

( )( )

1 1 1

1

1
1

; ; ;
+ 1 + 1

; ; 1 ;

; ;
         1 .

1 ;

k k k

k

k

n n n
i i i

i i ii i i

n
i i

i
i

g x G x G x
U

g x G x G x

G x G x

G x

  









  
 

  

 
 



= = =

−

+
=

     
= − +

−

  
 − +
 − 

  



 

 

The ML estimator of is obtained by setting 

and  equal to zeros and solving these 

equations at the same time. These equations 

cannot be solved analytically, however they can 

be solved numerically using iterative methods 

employing statistical software.  

 

( )z, ,1 ,
v

v i j z

n s
p w s

v

− 
= −  

 

( , , ) .T   =

( ) ( , , )
k

U U U U   =

,U U 
k

U
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4. Sub-Models 

In this section, we define new four sub-

models of the WW-G family namely, WW-

uniform, WW-exponential, WW-Rayleigh and 

WW-Kumaraswamy. 

 

4.1 WW-uniform distribution 

The cdf of WW-uniform  (WWU) is derived from (4), by taking ( ) 1; ,   0   g x x  −=      and  
  
 

( ) 1 ;G x x  −= as the following  

( )
( ) ( )1

WWU ; , , 1 e .
x x

F x
  

  
−

− + −
= −      

The corresponding pdf is given by 

( ) ( ) ( )
( ) ( )1( 1)

WWU ; , , 1 e . 0 .
x x

f x x x x
         

−
− + −− +

= + −    

Moreover, the hazard rate functions is given by, 

( ) ( ) ( )
( 1)

WWU ; , , 1 .h x x x
      

− +
= + −

 
 

 

4.2 WW-Exponential Distribution 

The cdf and pdf of WW-exponential (WWE) distribution are derived from (4) and (5) taking 

( ); 1 xG x e  −= − as the following 

( )
( )( )1 1

WWE ; , , 1 e .
xe

F x


 
  

− + −
= −   

and, 

( ) ( ) ( ) ( )( )1 1 1

WWE ; , , 1 1 e . 0 , , , 0.
xex xf x e e x


           

− − + −
= + −    

Further, the hazard rate function is as follows  

( ) ( ) ( )
1

WWE ; , , 1 1 .x xh x e e
      
−

= + −  

 

4.3 WW –Rayleigh Distribution 

The cdf and pdf of WW-Rayleigh (WWR) distribution are derived from (4) and (5) taking        

( )
2

; 1 xG x e  −= − as the following 

( )
( )

2
1 1

WWR ; , , 1 e .
xe

F x


 

  
 

− + − 
 = −   

and, 

( ) ( ) ( )
( )

2

2 2 1 1 1

WWR ; , , 2 1 1 e . 0 , , , 0.
xe

x xf x x e e x


  

         
 − − + − 
 = + −    

Further, the hazard rate function is as follows  

( ) ( ) ( )
2 2 1

WWR ; , , 2 1 1 .x xh x x e e


      
−

= + −  

4.4 WW - Kumaraswamy distribution 

 

The Kumaraswamy distribution has been suggested by (Kumaraswamy, 1980). The cdf and pdf of 

Kumaraswamy distribution are given by 

( ) ( ) ( ) ( )
1

1; , 1 1   , ; , 1 ,0 1, , 0
b b

a a aG x a b x g x a b abx x x a b
−

−= − − = −      

The cdf, pdf, and the hazard  rate functions for WW- Kumaraswamy distribution (WWKw) are obtained 

from (4) and (5), respectively as  

( )
( )( )1 (1 ) 1

WWKw ; , , , 1 e ,0 1 , , , , 0.
a bx

F x a b x a b



   

−− + − −
= −     

( ) ( ) ( ) ( )( )1 1 (1 ) 11 1

WWKw ; , , , 1 (1 ) (1 ) 1 e ,
a bxa a b a bf x a b ab x x x


    

−− − + − −− − − −= + − − −  
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and, 

( ) ( ) ( )
1

1 1

WWKw ; , , , 1 (1 ) (1 ) 1 .a a b a bh x a b ab x x x
   
−

− − − −= + − − −  

The plots of pdf and hazard rate function for the (a) WWU, (b) WWE, (c) WWR and (d) WWKw 

distributions are given in Figures 1 and 2 respectively 

 
(a) 

 
(b) 

 
(c)  

(d) 

Figure 1: The pdfs of (a) WWU, (b)WWE, (c) WWR and (d) WWKw distributions 
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(a) (b) 

 
(c) 

 
(d) 

Figure 2: The hrfs of (a) WWU, (b)WWE, (c) WWR and (d) WWKw distributions 

 

We can deduce from Figure 1 that the pdf of the 

distributions can have right and left skewness, 

bathtub, uni-model, and symmetric properties. 

As shown in Figure 2, the hrf of distributions 

can be U-shaped, J-shaped, reversed J-shaped. 

 

5. Simulation Study  

 

Herein, we evaluate the ML estimates' 

performance in terms of sample size n. The 

performance of ML estimates (MLEs) for the 

WWE model, which is one of the family's sub-

models, is evaluated numerically. The 

Mathematic programme is used to evaluate 

estimates based on the following quantities for 

each sample size: biases and empirical mean 

squared errors (MSEs). The following are the 

numerical procedures: 

❖ A random sample X1, X2,..., Xn is 

evaluated, with n = 30, 50, 100, and 

150. These random samples are 

generated using the inversion method 

from the WWE distribution. 

❖  Set1(α = 0.5,  λ= 0.5, θ = 0.5),  Set2(

,Set3(

,Set4(

, Set5(

, and 

Set6(  are 

the six sets of parameters that are 

considered. 

❖ For each parameter value and sample 

size, the WWE model's MLEs are 

evaluated. 

❖ Obtain the means, biases, and MSEs of 

the MLE for different sets of 

parameters and for each sample size by 

repeating this process 10,000 times. 

❖ Tables 1 to 3 show the empirical 

results. These tables show that as 

sample sizes grow, the estimates 

remain rather steady and close to the 

true value of the parameters. 

 

Table 1: MLE, Bias and MSE of WWE model for Set1and Set2  

n 
Paramete

r 

Set1(α = 0.5,  λ= 0.5, θ = 0.5) 
Set2(

 

MLE Bias MSE MLE Bias MSE 

30 

  0.5251 0.0251 0.0129 0.9584 0.2084 0.3067 

  0.5013 0.0013 0.0010 0.5073 0.0073 0.0028 

  0.6168 0.1168 0.4761 1.2009 0.2008 0.6600 

50 

  0.5106 0.0106 0.0055 0.7987 0.0487 0.0499 

  0.5004 0.0004 0.0004 0.5008 0.0008 0.0009 

  0.5287 0.0287 0.0198 1.0729 0.0729 0.0846 

 =0.75, =0.5  ,  =1.0)

 =1.25, =0.5  ,  =1.5)

 =0.5, =0.75  ,  =1.5)

 =0.5, =1.25  ,  =1.75)

 =0.5, =1.5  ,  =0.8)

 =0.75, =0.5 

,  =1.0)
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100 

  0.5065 0.0065 0.0033 0.7772 0.0272 0.0284 

  0.5007 0.0007 0.0002 0.5003 0.0003 0.0006 

  0.5141 0.0141 0.0101 1.0304 0.0304 0.0425 

150 

  0.5049 0.0049 0.0016 0.7697 0.0197 0.0134 

  0.5005 0.0005 0.0001 0.5010 0.0010 0.0003 

  0.5096 0.0096 0.0046 1.0196 0.0196 0.0196 

 

Table 2: MLE, Bias and MSE of WWE model for Set3and Set4 

n 
Paramete

r 

Set3(

 

Set4(

 

MLE Bias MSE MLE Bias MSE 

30 

  1.5182 0.2682 1.0400 0.6128 0.1128 0.3176 

  0.5025 0.0025 0.0013 0.7588 0.0088 0.0062 

  1.5834 0.0834 0.1657 1.6007 0.1007 0.1777 

50 

  1.4043 0.1543 0.4244 0.5667 0.0667 0.0635 

  0.5017 0.0017 0.0008 0.7576 0.0076 0.0043 

  1.5538 0.0538 0.0924 1.5460 0.0460 0.0956 

100 

  1.3096 0.0596 0.0955 0.5204 0.0204 0.0152 

  0.5006 0.0006 0.0004 0.7509 0.0009 0.0021 

  1.5195 0.0195 0.0420 1.5257 0.0257 0.0447 

150 

  1.2838 0.0338 0.0548 0.5182 0.0182 0.0092 

  0.5001 0.0001 0.0002 0.7527 0.0027 0.0013 

  1.52248 0.02248 
0.0275

6 1.5149 0.0149 0.0266 

 

Table 3: MLE, Bias and MSE of WWE model for Set5and Set6 

n 
Paramete

r 

Set5(

 

Set6(

 

MLE Bias MSE MLE Bias MSE 

30 

  0.6439 0.1439 1.0302 0.5190 0.0190 0.0100 

  1.2933 0.0433 0.0693 1.5106 0.0106 0.0159 

  1.8412 0.0912 0.2545 0.8577 0.0577 0.0544 

50 

  0.5829 0.0829 0.0922 0.5115 0.0115 0.0064 

  1.2856 0.0356 0.0397 1.5071 0.0070 0.0103 

  1.8103 0.0603 0.1307 0.8250 0.0250 0.0290 

100 

  0.5325 0.0325 0.0221 0.5061 0.0061 0.0031 

  1.2649 0.0149 0.0189 1.5037 0.0037 0.0052 

  1.7770 0.0270 0.0557 0.8140 0.0140 0.0127 

150 

  0.5193 0.0193 0.0117 0.5041 0.0041 0.0021 

  1.2594 0.0094 0.0117 1.5029 0.0029 0.0034 

  1.7601 0.0101 0.0338 0.8085 0.0085 0.0077 

 

 

6. A Technical analysis reliable renewable 

energy sources to reduce co2 emissions 

           

In this section, two data sets are studied to show 

how the WWE distribution outperforms other 

models. Comparing the new model to some 

models; namely, Gamma-Weibull (GW), 

weighted Weibull (WW), length biased 

Weighted Weibull (LBWW), Exponentiated 

Exponential Weibull (EEW), and the 

Exponential (E). We obtain the MLEs, and 

standard errors (SEs) of the model parameters. 

To compare the distribution models, we 

consider criteria like; Akaike information 

 =1.25, =0.5 

,  =1.5)

 =0.5, =0.75 

,  =1.5)

 =0.5, =1.25 

,  =1.75)

 =0.5, =1.5 

,  =0.8)
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criterion (AIC), the consistent AIC (CAIC), 

Bayesian IC (BIC), Hannan-Quinn IC (HQIC), 

Kolmogorov–Smirnov (KS) test and p-value 

(PV) test. The wider distribution, on the other 

hand, refers to lower AIC, CAIC, BIC, HQIC, 

KS, and the greatest value of PV. 

In the first data, we looked at statistics from 75 

countries in 2019 to see what percentage of 

primary energy consumption came from 

renewable technologies—a mix of hydropower, 

solar, wind, geothermal, wave, tidal, and 

modern biofuels [traditional biomass, which 

can be a significant energy source in low-

income countries, is not included]. This data is 

based on primary energy estimated using the 

"substitution approach," which attempts to 

account for inefficiencies in fossil fuel 

production. As stated in 

[https://ourworldindata.org/renewable-energy], 

it does this by transforming non-fossil fuel 

sources into their "input equivalents," or the 

amount of primary energy that would be 

required to produce the same quantity of energy 

if it came from fossil fuels. 

 

The second data represents the global CO2 

emissions per person in 2020 in 211 country, as 

mentioned in 

[https://www.statista.com/statistics/270508/co

2-emissions-per-capita-by-country/]. Since the 

industrial revolution, the burning of carbon-

based fuels has dramatically increased 

atmospheric carbon dioxide concentrations, 

hastening global warming and generating 

anthropogenic climate change. Because it 

dissolves in water to generate carbonic acid, it 

is a major contributor to ocean acidification. 

The addition of man-made greenhouse gases to 

the atmosphere causes the earth's radioactive 

balance to be disrupted. As a result, the earth's 

surface temperature is rising, affecting the 

climate, sea level rise, and global agriculture. 

CO2 emissions are produced by burning fossil 

fuels such as oil, coal, and gas for energy, as 

well as burning wood and waste materials and 

industrial operations such as cement 

manufacturing. 

Some descriptive statistics of the both data sets 

are mentioned in Table 4. 

 

Table 4: Descriptive statistics for the both data sets 

  n Mean Median Mode Variance Skewness Kurtosis Minimum Maximum 

Data I 75 0.14 0.1054 0.0618 0.02 2.2642 6.8757 0.0027 0.7908 

Data II 211 4.58 2.77 0.26 31.87 2.6127 8.8032 0.03 37.02 

 

 

Figure 3 illustrates the boxplots for the 

proposed data. The total time test (TTT) plot 

(see Aarset (1987)) is an essential graphical 

technique to check if the data can be applied to 

a given distribution or not, this is the TTT plot's 

empirically determined version is given by 

plotting 𝑇 (
𝑟

𝑛
) = ∑ [𝑦𝑖:𝑛 + (𝑛 − 𝑟)𝑦𝑟:𝑛]𝑛

𝑖=1 /

∑ (𝑦𝑖:𝑛)𝑛
𝑖=1  against 𝑟/𝑛, where 𝑟 =  1,  .  .  .  ,  𝑛  

and𝑦𝑖:𝑛, (𝑖 =  1,  .  .  .  ,  𝑛) are the order 

statistics of the sample. The hrf is constant if the 

TTT plot is graphically displayed as a straight 

diagonal, but increasing (or decreasing) if the 

TTT plot is concave (or convex), according to 

Aarset (1987). If the TTT plot is initially 

convex and then concave, the hrf is U-shaped 

(bathtub); otherwise, the hrf is unimodal. 

Figure 4 shows the TTT plots for both data 

sets.The plots of the profile log likelihood for 

the both data sets are illustrated in Figures 5 and 

6. 

 

 
 

Figure 3: Boxplots with color blue for the first data and the color green for the second data 
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Figure 4: TTT plots with color blue for the first data and the color green for the second data 

 

Figure 5. The profile log likelihood for the First data set 

 

Figure 6. The profile log likelihood for the second data set 
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The MLEs of the six competing models, as well as their SEs and AIC, CAIC, BIC, HQIC, PV, and KS 

values for both data sets, are shown in Tables 5 and 6. 

 

Table 5. MLEs, SEs and measures of fitting for the first data set 

Model 
MLEs and S. E 

AIC CAIC BIC HQIC KS P-V 
        

WWE 

0.068 1.079 97.871   -

136.1

43 

-

135.8

05 

-

136.5

17 

-

133.3

67 

0.054

05 

0.980

81 0.201 0.097 
293.33

5 
  

EEW 

1.68 0.832 2.257 0.245 -

135.2

21 

-

134.6

5 

-

135.7

21 

131.5

2 

0.055

5 

0.974

98 0.951 0.245 
0.0000

19 

0.0002

42 

WW 

96.92

7 

74.27

4 
0.107   -

131.9

89 

-

131.6

51 

-

132.3

64 

-

129.2

13 

0.090

8 

0.566

51 103.8

18 

92.25

7 
0.067   

LBW

W 

0.057 0.436 0.759   -

130.0

61 

-

129.7

23 

-

130.4

36 

-

127.2

85 

0.085

26 

0.646

83 0.083 0.862 0.325   

GW 

8.851 0.669 0.759   -

135.2

48 

-

134.9

1 

-

135.6

23 

-

132.4

72 

0.056

22 

0.971

71 2.168 0.789 0.325   

E 

6.977       -

132.5

58 

-

132.5

03 

-

132.6

83 

-

131.6

32 

0.082

72 

0.683

86 0.806       

 

 

Table 6. The MLEs, SEs and measures of fitting for the second data set 

Model 
MLEs and S. E 

AIC CAIC BIC HQIC KS P-V 
        

WWE 
0.003307 0.824 69.429   

1057 1058 1059 1062 0.03974 0.89282 
0.007718 0.048 169.258   

EEW 
1.185 0.757 0.2 0.41 

1061 1061 1063 1068 0.04561 0.77235 
0.402 0.147 4146 1122 

WW 
85.315 89.506 0.073   

1075 1075 1076 1079 0.09172 0.05745 
68.474 70.33 0.029   

LBWW 
0.006964 1.711 0.3   

1064 1064 1065 1068 0.07727 0.16088 
0.024 2.181 0.082   

GW 
17.905 3.046 0.156   

1070 1070 1071 1074 0.08698 0.08211 
11.438 0.937 0.047   

E 
0.218       

1066 1066 1067 1068 0.09273 0.05312 
0.015       

 

We find that the WWE distribution with 

three-parameter provides a better fit than the 

others five models. It has the smallest values 

of AIC, CAIC, BIC, HQIC, KS and the 

greatest value of PV among those 

considered here. 

Moreover, the plots of empirical cdf and 

empirical pdf displayed in Figures 7 and 9 

respectively. Furthermore, the PP plots of all 

competitive models for both data sets are 

displayed in Figures 6 and 8. 
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Figure 7. Estimated pdf and cdf of competitive models for the first dataset 

 
Figure 8. PP plots of the fitted models for the first data set 

 

 
Figure 9. Estimated pdf and cdf of competitive models for the second data set 

http://journalppw.com/
http://journalppw.com/
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Figure 10. PP plots of the fitted models for the second data set 

 

Also from Figures 8 and 10 we can see that the 

WWE distribution provides a better fit than the 

other five competitive models for both data 

sets. 

 

 

7. Conclusion  

         In this article, we introduce the 

weighed Weibull-G family of distributions. 

Properties of the WW-G are discussed, 

such as, expressions for the density 

function, moments, mean deviation, 

quantile function and order statistics. The 

maximum likelihood method is employed 

for estimating the model parameters. More 

specifically, weighed Weibull generated 

family covers several new distributions. 

We wish a broadly statistical application in 

some area for this new generalization. We 

used the WWE distribution as one of the 

models from the WW-G distributions to fit 

two real data sets that are affected by 

climate change. The first proposed data 

collected from renewable technologies in 

75 country is based on primary energy 

calculated by the ‘substitution method’ 

which attempts to correct for the 

inefficiencies in fossil fuel production. The 

second set of data provides global CO2 

emissions per person in 211 country in 

2020. This is an example of CO2 emissions 

coming from the combustion of fossil fuels 

like oil, coal, and gas for energy, as well as 

the burning of wood and waste materials 

and industrial operations like cement 

manufacturing. As a result, the earth's 

surface temperature is rising, affecting the 

climate, sea-level rise, and global 

agriculture. Real data applications 

demonstrate that the WWE model 

frequently gives better fits compared to 

some other alternative models. 
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