
Journal of Positive School Psychology                                                                                                                                http://journalppw.com 

2022, Vol. 6, No. 3, 8623–8635 

© 2022 JPPW. All rights reserved 

 

Performance Evaluations of Convolutional Neural Network (CNN)-

Based Models for Semantic Segmentation of Plant Leaf Diseases 
 

Ali Abd Almisreb1, Samir Z. Aliyev2, Raseeda Hamzah3, Nursuriati Jamil4 

 

1,2Faculty of Engineering and Natural Sciences, International University of Sarajevo, 

Sarajevo, Bosnia, and Herzegovina 
1aalmisreb@ius.edu.ba 

3,4 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah 

Alam, Selangor, Malaysia 
3raseeda@fskm.uitm.edu.my 

4lizajamil@computer.org 

 

Abstract 

Plant disease identification is important to sustain food production. Automated plant disease 

identification using Convolutional Neural Network has shown highly potential to provide effective 

solution to high accuracy and real-time plant disease detection. This paper presented the evaluations 

of five CNN-based models, namely DeepLabV3+ network with Resnet18/Resnet50/Resnet101, 

modified Alexnet, and Segnet with VGG-16 for semantic segmentation and identification of plant leaf 

diseases. The leaf images were acquired from Leaf Disease on Kaggle comprising four types of leaf 

diseases: bacteria, fungi, nematodes and virus. A total of 196 images were labeled for ground-truth 

development and training dataset. Image augmentation was conducted to increase the training dataset 

followed by assigning class weightage to the imbalanced classes. A total of 1,918 labeled images were 

produced and these images were used to train the five CNN-based models. All the pre-trained CNN-

based models were modified to cater to the new leaf disease dataset and to optimize the semantic 

segmentation. The results showed that DeepLabV3+ network with ResNet-18 outperformed other 

models achieving 95.8% global accuracy for segmentation of the leaf diseases. This is followed by 

Segnet with VGG-16, ResNet-50, ResNet-101 and modified AlexNet.  However, upon closer study of 

the classes, the mean accuracy showed that AlexNet achieved better results compared to Segnet with 

VGG-16 and ResNet-50 

Keywords: CNN-based network, semantic segmentation, intersection-over-union, leaf disease. 

 

I. INTRODUCTION 

The importance of agriculture was highlighted 

in the Sustainable Development Goals (SDG) 

Plan 2030, where SDG2 is specially dedicated 

to ending world hunger, achieve food security, 

improved nutrition and promote sustainable 

agriculture. Crop disease issues may lead to 

famine and food insecurity around the world. It 

is estimated that plant pathogens may account 

for annual crop yield losses of up to 16% 

globally (Oerke, 2006). Early and precise 

identification is an essential part of disease 

monitoring. The popular practice of disease 

identification was done by experienced farmers 

or plant pathologists using a visual examination 

of the plant. However, this manual practice may 

lead to inconsistencies and is also time-

consuming. In isolated and poor regions, it will 

incur a further cost as plant pathologists are not 

readily available. It is also worth noting that 

many proper and thorough monitoring of 

agricultural areas are too expensive (Barbedo, 

2018).  

Automated plant disease identification using 

machine learning has shown tremendous 

potential to become a more effective solution 
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providing high accuracy, real-time, low cost 

and simple plant disease detection operation. 

Conventional machine learning methods such 

as K-nearest neighbors (K-NN), logistic 

regression, decision tree, and support vector 

machine (SVM) (Annabel et al., 2019; Zhang et 

al., 2019) had made some progress in plant 

disease recognition. These approaches were 

combined with various image pre-processing 

methods to enhance feature extraction. 

However, the most recent work of plant disease 

identification by (Geetharamania and  Pandian, 

2019; Ferentinos, 2018; Barbedo; 2018; Too et. 

al, 2019) concluded that Convolutional Neural 

Networks (CNNs) were highly powerful and 

suitable for the automated detection and 

diagnosis of plant diseases through the analysis 

of simple leaves images. Since the introduction 

of the Deep Convolutional Neural Network 

(DCNN) of AlexNet (Krizhevsky et al., 2012), 

deep learning has made an unprecedented 

achievement in the development of computer 

vision.  

There are several factors to be considered when 

using CNN models for plant disease 

identification (Barbedo, 2018). The factors that 

are extrinsic to the plant disease recognitions 

are limited annotated datasets, symptom 

representation, covariate shift, image 

background, and image-capture conditions. 

Another four factors that are intrinsically 

related to the plant disease are symptom 

segmentation, symptom variations, 

simultaneous disorder and disorder with similar 

symptoms. The use of transfer learning models 

and augmented data in plant disease recognition 

somewhat alleviated the need for huge 

annotated datasets (Ferentinos, 2018). 

However, a robust plant identification system 

should be able to recognize variations of 

diseases caused by pests, nutritional 

deficiencies, phytotoxicity and many more. At 

the time of writing, there are no such extensive 

datasets that represent these symptoms variety. 

Therefore, a model trained using several 

symptoms would not be able to identify other 

unseen symptoms. One popular dataset 

commonly used for plant disease identification 

is the PlantVillage dataset by (Hughes and  

Marcel, 2015). It contains 54,306 images of 

healthy and infected leaves images; comprising 

26 diseases for 14 crop plants and divided into 

38 different classes. However, training and 

testing a model using the same dataset usually 

resulted in non-realistic performance 

assessment (Barbedo, 2018). This is because the 

model has a high chance of failing when 

applied to other datasets (Mohanty et al.,  

2016).  This problem is known as covariance 

shift.  

Even though CNN models were able to detect 

diseases from a whole leaf image, it was shown 

that CNN model trained with individual lesions 

and localized symptom regions achieved 85% 

compared to the accuracy obtained using the 

original images at only 76% (Barbedo, 2018). 

Therefore, symptom segmentation is deemed to 

be an important factor for a more robust plant 

disease identification. This is the motivation of 

our work. This paper focused on comparing 

pre-defined CNN-based networks to perform 

symptom segmentation and solve plant disease 

detection tasks. Pixel-labeling on each leaf 

image was performed to classify the portions of 

the images into three (3) main classification 

areas: disease, healthy, and background parts. 

the diseases category includes four (4) disease 

types namely Bacteria, Fungi, Nematodes and 

Virus. Five CNN-based models that were 

DeepLabV3+ based on Resnet18, Resnet50, 

Resnet101, AlexNet, and Segnet based on 

VGG16 were selected and modified. The 

modifications were done based on the relevancy 

of the semantic segmentation tasks and to 

determine the most preferred CNN model.  

 

II. RELATED WORK 

Machine learning methods were still actively 

being used in plant disease classification as 

demonstrated by the work done by (Singh et al., 

2019) (Balakrishna et al., 2019) and (Rani and 

Paul, 2019). In (Singh et al., 2019), Support 

Vector Machine (SVM) was used to identify the 

early symptoms and classified fungal rust 

disease of pea at the microscopic level with an 

accuracy of 89.60%. On the other hand, K-NN 
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and Probabilistic Neural Network (PPN) were 

utilized in a 2-stage classification of tomato 

leaves into healthy and unhealthy classes 

(Balakrishna; RAO, 2019, p. 63). In this work, 

PNN outperformed KNN when the leaf features 

were represented using Gray Level Co-

occurrence Matrix (GLCM), Gabor filters and 

colours. Even though machine learning methods 

are still commonly used, Convolutional Neural 

Network (CNN) models for plant disease 

identifications are currently the adopted state-

of-the-art methods (Barbedo, 2019).  

As seen in Table 1, CNN-based networks have 

demonstrated high accuracies in detecting and 

classifying plant diseases using plant leaves. 

Even though several studies used their datasets 

such as Oppenheim et al. (2017)  and Liu et al. 

(2018), the majority experimented using one or 

more crops in the PlantVillage dataset. 

However, Barbedo (2019) argued that 

PlantVillage images have limited diversity 

where a large proportion of the images 

contained homogeneous background 

particularly the earlier versions of 2015. 

Therefore, Barbedo (2019) developed his 

dataset comprising leaf images divided into 

individual lesions and spots captured under a 

diversity of conditions. More importantly, 

Table 1 also shows that CNN-based networks 

were tested and the accuracy proved that they 

are highly capable of identifying plant diseases.  

Table 1 – Summary of CNN-based models in plant disease identification

Reference CNN network Best network Dataset Accuracy 

(Too et al., 2019) VGG 16, Inception V4, 

ResNet with 50, 101 and 152 

layers DenseNets 121 layers 

DenseNet PlantVillage 99.75% 

(KC et al., 2019) MobileNet depthwise 

separable, Reduced 

MobileNet, Modified 

MobileNet 

MobileNet depthwise 

separable 

PlantVillage 98.65% 

(Geetharamani and  

Pandian, 2019) 

Deep CNN, SVM, Decision 

Tree , Logistic Regression, 

KNN 

DeepCNN PlantVillage 98.15% 

(Ferentinos, 2018) AlexNet, AlexNetOWTBn, 

GoogleNet, Overfeat, VGG 

VGG PlantVillage 99.48% 

(Khamparia et al.,  

2019) 

CNN+autoencoder 

 

 PlantVillage 97.50% 

(Liang et al., 2019) ResNet18-

ResNet34,ResNet50,ResNet10

1, PD2SE-Net50 

PD2SE-Net50 Synthetic 

dataset 

98% 

(Liu et al., 2018) 
AlexNet 

 Own 98% 

(Oppenheim et al., 

2019) 
VGG 

 Own 96% 

 

The performance of CNN-based models that 

were VGG 16, Inception V4, ResNet with 50, 

101, and 152 layers, and DenseNets with 121 

layers were tested by (Too et al., 2019). The 

paper reported the DenseNets model to 

consistently improved accuracy and there was 

no indication of overfitting and deteriorated 

performance with the increasing number of 

epochs. DenseNets was also able to achieve a 

commendable accuracy of 99.75% with a 

considerably smaller number of parameters and 

reasonable computing time. KC et al. (2019) 

compared Modified MobileNet, Reduced 

MobileNet, and MobileNet depthwise separable 

using PlantVillage dataset and achieved an 

accuracy rate of 97.65%, 98.34% and 98.65%, 

respectively. In Geetharamani and Pandian 

(2019), a novel nine-layer deep CNN was 

proposed and compared with AlexNet, ResNet, 

VGG16, Inception-v3, SVM, Decision Tree, 

Logistic Regression and K-NN. The proposed 

deep CNN was trained using different training 

epochs, batch sizes, and dropouts and managed 

to achieve 96.46% accuracy. Another work by 

(Ferentinos, 2018) also used PlantVillage 
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dataset to examine the performance of AlexNet, 

AlexNetOWTBn, GoogleNet, Overfeat, and 

VGG. The results showed VGG outperformed 

the other four networks achieving a 99.53% 

accuracy rate. Finally in Khamparia et al. 

(2019), a hybrid approach of combining CNN 

and autoencoders was done to build a network 

that is invariant to shadows, illumination, and 

skewed images. It was observed that the 

proposed architecture achieved variations in 

accuracy for the different number of epochs and 

different convolution filter size. They reached 

97.50% accuracy for 2×2 convolution filter size 

in 100 epochs, while 100% accuracy for 3×3 

filter size. 

Plant disease identification using other datasets 

involving CNN-based networks has also shown 

promising results. Oppenheim et al. (2019) used 

the Visual Geometry Group (VGG) and 

achieved 96% accuracy in classifying the potato 

tuber diseases into five classes, namely, four 

disease classes and a healthy potato class. 

Meanwhile, (Liang et al., 2019) introduced a 

robust image-based Plant Disease Diagnosis 

and Severity Estimation Network (PD2SE-Net) 

comprising ResNet50 architecture as the basic 

model and shuffle units as the auxiliary 

structures. They used a synthetic dataset to 

conduct disease severity estimation, plant 

species recognition and plant disease 

classification, achieving overall accuracies of 

0.91, 0.99 and 0.98, respectively.  

 

III. METHODOLOGY 

In this section, the image datasets, dataset 

labeling, data augmentation, training, and 

testing datasets, and architecture of the five 

CNN-based models are elaborated. Based on 

the literature findings, there is no work done to 

compare the accuracy of DeepLabV3+ (Chen et 

al.,  2018) based on Resnet18, Resnet50, 

Resnet101 (He et al., 2016), AlexNet 

(Krizhevsky; Sutskever; Hinton, 2012), and 

Segnet based on VGG16 (Simonyan and 

Zisserman, 2015) for plant disease 

identification.  

 

Image Dataset 

The image dataset known as Leaf Disease was 

obtained from the Kaggle online 

(Sizlingdhairya, 2019) community of data 

scientists and machine learning engineers. The 

dataset contained 239 leaf images comprising 

four classes of leaf diseases namely Bacteria, 

Fungi, Nematodes, Virus, and one Healthy 

class. The quantity of images per class is shown 

in Table 2. Only Class 1, 2, 3 and 5 were 

considered in this paper as the main focus is to 

conduct semantic segmentation for plant 

disease identification. Therefore, 199 images 

were selected from the Leaf Disease dataset for 

this paper.  

Table 2 – Leaf Disease dataset and class labels 

Class 

number 
Class name 

Image Quantity Label Class Label No 

1 Bacteria 50 Bacteria 1 

2 Fungi 50 Fungi 2 

3 Nematodes 49 Nematodes 3 

4 Healthy 40 Healthy 4 

5 Virus 50 Virus 5 

 Total 239 Background 6 

 

Image Labeling 

The purpose of image labeling was to develop 

the ground-truth and the training dataset for the 

semantic segmentation. Every spot depicting 

the presence of disease was accurately 

segmented and the image region containing the 

healthy pixels and non-leaf pixels (i.e. 

background) was also segmented. Refer to 

Figure 1. Therefore, six labels were created for 

the labeled dataset as shown in the final two 

columns of Table 2 which were used for 

training of the five CNN-based models. During 

labeling, three images from the Virus class were 
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eliminated because the image was blurry and 

noisy making it impossible to label each pixel 

in the image. Thus, a total of 196 images was 

labeled accordingly. 

Figure 1 – Samples of labelled images 

 

Image Augmentation 

It is a known fact that a deep learning model 

requires a large dataset. Therefore, image 

augmentation was performed on the labelled 

dataset to increase the quantity of the training 

dataset without having to acquire more images. 

The training and testing dataset were distributed 

approximately according to the 70:30 ratio. 

Thus, 137 random images out of the 196 images 

were considered for the training dataset, while 

the remaining 59 images were used as the 

ground truth dataset for evaluation in the testing 

stage. The image augmentation process 

involved two stages of operations. In the first 

stage, the 137 labelled images were subjected to 

colour jittering, identical random scaling by a 

scale factor in the range [0.8 1.5], horizontal 

reflection and rotation in the range [-30, 30] 

degrees. See Figure 2a. The second stage of 

image augmentation creates a crop window 

centered on the image, then the image was 

cropped to 230 x 230 dimensions. See Figure 

2b. The purpose of cropping is to reduce the 

background pixels produced during the first 

stage of image augmentation. Therefore, a more 

accurate representation of the leaf images was 

used for training the CNN-based models. A 

total of 1,918 augmented leaf images were 

produced. 

 

 
Figure 2 – Augmented images after colour jitter, scaling, horizontal reflection, rotation and 

cropping 

Class Balancing The number of images in each class was 

imbalanced, therefore class balancing using 



Ali Abd Almisreb, et. al.     8628  

© 2022 JPPW. All rights reserved 

class inverse class frequency weighting was 

used to balance the classes. Each class 

frequency was calculated and the class weights 

were computer as the inverse class frequency 

over the labeled training dataset. The class 

weightage is shown in Table 3. 

Table 3 – Class weights 

Label name Class weight 

Bacteria 1.6714 

Fungi 7.5047 

Nematodes 4.2521 

Virus 0.7134 

Healthy_Part 0.2555 

Background 0.2595 

Construction of the CNN-Based Models 

In this section, the comparison of five CNN-

based models was described and the results 

presented. Figure 3 illustrates the process flow 

diagram of the research and each process is 

described in the subsections of Methodology. 

As depicted in the figure, the training dataset 

includes both original Leaf Disease images and 

the labelled images resized to 230x230x3 to 

accommodate the requirements of the CNN-

based models. The performance of the semantic 

segmentation and plant disease identification 

was then measured using Intersection-over-

Union (IoU) metrics and accuracy. 

DeepLabV3+ network based on ResNet-

18/50/101 models 

The Residual Learning framework addressed 

accuracy saturation and degradation problems 

in deep networks. In this paper, we investigated 

three different layers of residual networks, 

namely ResNet-18, ResNet-50, and ResNet-

101. We prepared the three ResNet models for 

the training stage by modifying them according 

to the DeepLabV3+, a type of CNN model. The 

modified parameters are presented in Table 4 

and the detailed steps are as follows: 

a) Firstly, Feature Extraction Layers (FEL) 

were selected from ResNet. For DeepLab v3+, 

the feature extraction layer was typically 

towards the end of the network, right before the 

classification layers. 

b) After the FEL, all layers were removed in 

ResNet models. 

c) The network image input size was amended 

appropriately to the training image size. 

d) The network downsampling was reduced to 

8 or 16 to preserve the spatial resolution 

required for accurate segmentation. 

e) The convolution layer dilation factors were 

incremented to increase the receptive field size 

required to extract features from larger image 

regions. 

f) The artrous spatial pyramid pooling module 

(ASPP) was added to the network. 

g) Skip layer was selected to add a skip 

connection. 

h) The decoder sub-network for DeepLab v3+ 

was added with skip layer and 6 is number of 

classes. 

i) In the final step, Softmax and pixel 

classification layers were added to classify each 

pixel. 

Table 4 – ResNet modifications for DeepLabV3+ 

Parameters ResNet-18 ResNet-50 ResNet-101 

    

FEL 'res5b_relu' 'activation_49_relu' 'res5c_relu' 

Removed 

Layers 

"pool5" 

"fc1000" 

"prob" 

"ClassificationLayer_predictions" 

"avg_pool" 

"fc1000" 

"fc1000_softmax" 

"ClassificationLayer_fc10

00" 

"pool5" 

"fc1000" 

"prob" 

"ClassificationLayer_predi

ctions" 

Input Size 230 x 230 x 3 

Dilated Layers "res5a_branch2b" 

"res5b_branch2a" 

"res5b_branch2b" 

"res5a_branch2b" 

"res5b_branch2a" 

"res5b_branch2b" 

"res5b_branch2c" 

"res5c_branch2a" 

"res5c_branch2b" 

"res5c_branch2c" 

"res5a_branch2b" 

"res5b_branch2a" 

"res5b_branch2b" 

"res5b_branch2c" 

"res5c_branch2a" 

"res5c_branch2b" 

"res5c_branch2c" 

Skip Layer 'res2b_relu' 'activation_10_relu' 'res2b_relu' 
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Figure 3 – Process flow of the research 
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Table 4 – ResNet modifications for DeepLabV3+ 

Parameter

s 

ResNet-18 ResNet-50 ResNet-101 

FEL 'res5b_relu' 'activation_49_relu

' 

'res5c_relu' 

Removed 

Layers 

"pool5" 

"fc1000" 

"prob" 

"ClassificationLayer_predictions

" 

"avg_pool" 

"fc1000" 

"fc1000_softmax" 

"ClassificationLay

er_fc1000" 

"pool5" 

"fc1000" 

"prob" 

"ClassificationLay

er_predictions" 

Input Size 230 x 230 x 3 

Dilated 

Layers 

"res5a_branch2b" 

"res5b_branch2a" 

"res5b_branch2b" 

"res5a_branch2b" 

"res5b_branch2a" 

"res5b_branch2b" 

"res5b_branch2c" 

"res5c_branch2a" 

"res5c_branch2b" 

"res5c_branch2c" 

"res5a_branch2b" 

"res5b_branch2a" 

"res5b_branch2b" 

"res5b_branch2c" 

"res5c_branch2a" 

"res5c_branch2b" 

"res5c_branch2c" 

Skip Layer 'res2b_relu' 'activation_10_relu

' 

'res2b_relu' 

SegNet network based on VGG-16 

VGG-16 network is made up of 13 

convolutional layers (CL) and 3 fully connected 

(FC) layers.  The SegNet is a modified form of 

VGG16 architecture and is an essential 

semantic segmentation tool 

(Badrinarayanan2017). A new pixel 

classification layer was created with the 

balanced classes stated in Table 2. The current 

pixel classification layer in the SegNet network 

was removed and replaced with the new 

updated pixel classification layer and then this 

layer was connected to the Softmax layer. 

Modified AlexNet network 

The pre-defined AlexNet network was modified 

in this paper to estimate the performance of the 

model for semantic segmentation. The image 

size of the input layer (the first layer) was 

resized to 230x230x3. Weights and bias 

parameters of the 17th and 20th layers (FC 

layers) were updated. The last two layers were 

removed from the predefined model.  A new 

pixel classification layer was created with the 

balanced classes stated in Table 2. The current 

pixel classification layer in the SegNet network 

was removed and replaced with the new 

updated pixel classification layer and then this 

layer was connected to the Softmax layer. 

Training of the CNN-based Models 

After reconstructing the five CNN models, the 

training process commenced using stochastic 

gradient descent with momentum (SGDM) 

optimizer. The training was implemented in 

MATLAB 2019b platform utilizing deep 

learning and computer vision toolbox on a 

graphics processing unit NVIDIA GeForce 

GTX 1050 Ti, 4GB RAM, Intel Core i5 8th 

Gen CPU. Figure 4 shows the accuracy training 

performance up to 10,000th iterations, for 

Alexnet, Resnet-18, Resnet-50, Resnet-101, and 

VGG-16 models respectively. From the figure, 

AlexNet showed the lowest performance and 

ResNet-18 outperformed the other models 

based on the accuracy rate.  
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Figure 4 – Accuracy rate of training Alexnet, Resnet-18, Resnet-50, Resnet-101, and VGG-16 

models 

 

4. Performance Evaluations 

Testing was conducted using 59 leaf images to 

evaluate the performance of all five networks. 

An example of the segmentation results of each 

trained network, ResNet18/50/101, AlexNet, 

and VGG-16 can be seen in Figure 5. The 

original test image is shown in the first row, 

followed by the ground truths and the 

segmented results of all trained networks. Each 

pixel of the network’s output was compared to 

the corresponding pixel in the ground truth 

labeled image. The overlapping pixels (IoU) are 

demonstrated in the last row of Figure 5. 

Particularly, the green and magenta regions 

highlighted areas where the segmentation 

outcomes differed from the ground truth. 

 

Table 5 – Overall performance of the CNN-based models 

CNN Model GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore 

ResNet-18 0.9580 0.8486 0.6994 0.9252 0.8399 

ResNet-50 0.8769 0.5729 0.3956 0.8032 0.4376 

ResNet-101 0.8760 0.7132 0.4634 0.8010 0.4609 

VGG-16 0.9291 0.4192 0.3582 0.8895 0.7620 

AlexNet 0.8483 0.6780 0.3825 0.7801 0.4206 
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Figure 5 – An example of segmentation using  ResNet18/50/101, AlexNet, and VGG-16 models. 

The overall performance of the five models is 

shown in Table 5. Five metrics were used to 

evaluate the performance of the five CNN-

based models. The global accuracy reflects the 

percentage of correctly classified pixels 

regardless of class, while the mean accuracy 

refers to the percentage of correctly identified 

pixels for each class. Again, ResNet-18 showed 

the highest percentage of correctly segmented 

pixels with 95.80% followed by VGG-16 at 

92.91%. However, upon inspecting the mean 

accuracy, the highest correctly segmented 

pixels of VGG-16 scored the lowest average per 

class score of 41.92% indicating its 

performance for each class was not favourable. 

ResNet-18, on the other hand, remained as the 

top scorer of mean accuracy at 84.86%. Two 

metrics describing the Intersection-Over-Union 

were Mean IoU and Weighted IoU. In general, 

the Mean IOUs of all networks showed low 

percentages: ResNet-18 achieved a mere 

69.94%, followed by ResNet-101 at 46.34 % 

and the other models achieving below 40%. The 

Mean IoU reflects that there are high false 

positives during the semantic segmentation of 

the leaf images. A fairer evaluation should 

utilize the Weighted IoU due to the 

disproportionately sized classes of the leaf 

images. The Weighted IoU shows a high score 

of 92.52% for ResNet-18 followed by 88.95% 

for the VGG-16 model. The final metric that 

was considered was MeanBFscore, which 

calculated how well the predicted boundary of 

each class aligned with the actual boundary. 

Based on Table 5, the ResNet-18 model 

consistently outperformed the other four models 

in all metric evaluations. Even though VGG-16 

also showed promising results, its Mean 

Accuracy and Mean IoU were rather poor 

indicating its low robustness per class. 

Meanwhile, AlexNet achieved the lowest 

Global Accuracy, Weighted IoU and 

MeanBFScore indicating its low performance 

for semantic segmentation of leaf disease, in 

general. 
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Further investigations were done to study the 

impact of each class contributing to the overall 

performance of each network. The average 

Accuracy, IoU, and MeanBFScore results of 

each class are presented in Table 6. Overall, the 

class Background which contains pixels 

belonging to non-leaf has the highest accuracy 

rate, IoU and MeanBFScore. Healthy_part class 

which represented the non-infected pixels of the 

leaf was also another class that achieved good 

results indicating that the pixels were generally 

correctly segmented. The other four classes 

which represented the leaf diseases, however, 

were not segmented well. The Fungi class 

achieved the highest accuracy of 67.53% 

among the disease classes, followed by the 

Bacteria class at 49.29%, Nematodes at 48.47% 

and Virus at 37.62%. A closer inspection was 

then done to evaluate the semantic 

segmentation according to the CNN-based 

models. 

Table 6 – Overall performance of the class 

measured by average accuracy, IoU and 

MeanBFScore 

Class Accuracy IoU MeanBFScore 

Bacteria 0.4929 0.2581 0.40 

Fungi 0.6753 0.2736 0.3164 

Nematodes 0.4847 0.2187 0.3222 

Virus 0.3762 0.2584 0.3914 

Healthy_Part 0.9038 0.8376 0.5448 

Background 0.9451 0.9123 0.7774 

 

Table 7 listed the accuracy, IoU, and 

MeanBFScore of each class. The ResNet-18 

model achieved the highest accuracy rates for 

all four disease classes compared to the other 

CNN-based models. Interestingly, even though 

VGG-16 achieved the second-highest global 

accuracy rate as stated in Table 5, its 

MeanAccuracy was low because all the 

accuracies of the 4 disease classes were very 

poor. The Bacteria class scored an accuracy rate 

of 39.11%,  followed by the Virus class at 

18.40% and both the Nematodes and Fungi 

classes failed miserably. Also, even though 

AlexNet was ranked lowest based on the 

GlobalAccuracy rate in Table 5, the average 

accuracy of all the disease classes segmented by 

AlexNet achieved better accuracy than VGG-16 

and ResNet-50. Therefore, based on per class 

accuracy ResNet-18 is the best CNN-based 

model in segmenting plant disease images 

followed by ResNet-101, AlexNet, Res-50 and 

VGG-16 model.  

Table 7 – Overall performance of the CNN-based models 

 ResNet-18 ResNet-50 

Classes Accuracy IoU 
MeanBFScor

e 
Accuracy IoU 

MeanBFScor

e 

Bacteria 0.6802 0.5444 0.6664 0.4614 0.1588 0.2840 

Fungi 0.9165 0.6507 0.7879 0.7964 0.2448 0.3176 

Nematodes 0.8856 0.5946 0.8438 0.2043 0.1543 0.2099 

Virus 0.6644 0.5102 0.6901 0.1562 0.1322 0.1294 

Healthy_Part 0.9643 0.9264 0.8387 0.9070 0.8079 0.3787 

Background 0.9803 0.9699 0.9379 0.9117 0.8758 0.7023 

 ResNet-101 VGG-16 

Classes Accuracy IoU 
MeanBFScor

e 
Accuracy IoU 

MeanBFScor

e 

Bacteria 0.5063 0.2797 0.2929 0.3911 0.1392 0.5432 

Fungi 0.7997 0.3016 0.3087 0.0001 0.0001 0.0164 

Nematodes 0.6636 0.2369 0.3680 0.0001 0.0001 0.0133 

Virus 0.5207 0.2979 0.2901 0.1840 0.1416 0.5618 

Healthy_Part 0.8849 0.7973 0.3753 0.9594 0.9103 0.7623 

Background 0.9041 0.8668 0.6965 0.9805 0.9578 0.8603 

AlexNet 
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Classes Accuracy IoU 
MeanBFScor

e 

Bacteria 0.4257 0.1688 0.2135 

Fungi 0.8638 0.1706 0.1515 

Nematodes 0.6702 0.1084 0.1761 

Virus 0.3561 0.2102 0.2856 

Healthy_Part 0.8034 0.7459 0.3692 

Background 0.9488 0.8911 0.6898 

 

5. Conclusion 

This paper compared the performance 

evaluation of five commonly used CNN-based 

models for the semantic segmentation of plant 

leaf diseases. The experiments were conducted 

using the Leaf Disease image dataset to 

segment four common leaf diseases, namely 

bacteria, fungi, nematodes and virus. The initial 

overall results revealed that the ResNet-18 

model has the highest correctly classified pixels 

with the highest global accuracy and VGG-16 

achieved the second-highest accuracy. AlexNet, 

however, recorded the lowest global accuracy 

among all the CNN-based models. Upon closer 

review of the per class evaluations, the mean 

accuracy was retained by the ResNet-18 model 

indicating that this model consistently classified 

the disease pixels correctly both at the image 

and per class levels. Among the disease classes, 

the Fungi class achieved the highest accuracy 

followed by the Bacteria class, Nematodes and 

Virus class. For unknown reasons, the VGG-16 

model performed worst at segmenting the 

disease pixels. The findings showed that when 

performing semantic segmentation, it is 

important to analyze accuracy at global level 

and class level. Even though the CNN-based 

network achieved good accuracy at global level, 

the same was not true for class level. Therefore, 

if class identification is crucial, a CNN model 

with high mean accuracy is recommended. On 

the other hand, if only general detection is to be 

done, a CCN model with satisfactory global 

accuray suffices. For future research, the class 

imbalanced issues need to be resolved for better 

semantic segmentation. Also, deeper insights 

into the segmentation at the class level should 

be investigated to better understand how the 

CNN-based models worked. 
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