
Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 3, 8571–8588

© 2022 JPPW. All rights reserved

Detection of Malicious Binaries and Executables Using Machine

Learning-based Detectors

John Martin M. Ladrido 1 , Lawrence Materum2

1De La Salle University, john_martin_ladrido@dlsu.edu.ph
2De La Salle University
2Tokyo City University

Abstract

In digital networks, the most common goal of cybercriminals is to steal high-privilege credentials or

valuable data. By obtaining high-privilege credentials, cybercriminals can easily navigate, destroy, or

steal an organization's data, such as bank details, personal data, and intellectual properties. With the

advent of information technology and operational technology convergence like the Internet of things

(IoT), it becomes more critical on protecting the high-privilege credentials as cybercriminals can have

the power to control operational technologies such as industrial control systems (ICS) and supervisory

control and data acquisition (SCADA). Unfortunately, even with this information, many organizations

are easily susceptible to these attacks, especially manufacturing firms. This paper presents how

cybercriminals from the Internet can utilize malicious payloads and executables to compromise an

organization. The proposed approach also shows how organizations can detect those using an (ML)

machine learning-based detection by collecting the malicious executables and binaries used in the

attacks. Doing so could help organizations to be equipped with proper knowledge in understanding

the underlying attack and, at the same time, implementing their detection mechanism specific to the

cybercriminals attacking their network. The results show that the machine learning-based detector can

identify the samples, whether malicious or benign.

Keywords: advanced persistent threat, malware, machine learning, client-side attacks, privilege

escalation, network lateral movement

I. INTRODUCTION

Today's data communication has evolved from

the simple sender-receiver transfer of data into

a web of information transmission from one

network system to another network system. As

the knowledge extracted from data and

information becomes potentially more valuable

than oil or gold, it is imperative to protect these

resources from cybercriminals and adversaries.

Aside from data and information,

cybercriminals' common targets are industrial

control systems and supervisory control and

data acquisition, which leverages IoT

technology. Microsoft's defense report

(Microsoft Report Shows Increasing

Sophistication of Cyber Threats, 2020) showed

a noticeable shift of sophisticated attacks

towards credential harvesting and ransomware.

The total volume of attacks to IoT has increased

by 35% in the first half of 2020. In addition,

according to ZDNet's report using F5's statistics

(Cimpanu, 2020), Brute Force or Credential

Stuffing is the number one security incident at

41%, followed by Distributed Denial-of-Service

(DDoS) at 32%.

On the other hand, according to (Ransomware

Upgrades with Credential-Stealing Tricks,

2020), Ransomware is now being utilized to

steal credentials in commonly used browsers

such as Google Chrome, Mozilla Firefox, and

Microsoft Internet Explorer. In addition to its

web browser attack vector, Ransomware has

been upgraded to steal E-mail credentials in

Mozilla Thunderbird and Microsoft Outlook.

John Martin M. Ladrido, et. al. 8572

© 2022 JPPW. All rights reserved

By having high-privilege credentials to control

workstations and servers, cybercriminals and

adversaries have the power to sabotage

manufacturing firms, power generating

organizations, transportation controls, or, worst,

nuclear and military weapons. For example, it

was not long ago that a malware outbreak in

Ukraine resulted in shutting down monitoring

systems for radiation levels at the Chernobyl

Nuclear power plant, according to ("Another

Massive Ransomware Outbreak – or Was It?,"

2017).

According to (Heritage, 2019), due to the 4th

industrial revolution, cybercriminals and

adversaries have more attack vectors nowadays

because of information technology and

operational technology convergence. The

average life cycle of computer systems is

around nine years. In comparison, machines and

sensors from Internet-of-Things or robotics may

last 20 to 30 years, giving cybercriminals and

adversaries more time to discover

vulnerabilities and exploits for such devices.

According to (Lemay et al., 2018), the number

of cybercriminals and adversaries is

significantly increasing worldwide, making

defending harder for small companies and

organizations with a limited budget and

personnel against cybersecurity threats. As

such, cybersecurity is always depicted as an

arms race between cybercriminals and security

vendors, according to (Mansfield-Devine,

2017), and the battleground would be the

companies' or organizations' digital

environment. According to (The 2020 Data

Breach Investigations Report – a CSO's

Perspective - ScienceDirect, 2020), the top two

reasons why security breaches happen do not

have enough time to identify vulnerabilities and

attack vectors at 31%, followed by not having

the expertise or adequate knowledge to

remediate the vulnerabilities found at 21%.

Thus, companies and organizations usually do

not know how these cyber-attacks formulate

from cybercriminals and adversaries and defend

themselves from getting compromised.

Figure 1. Simple Enterprise Network Architecture

In a company's or organization's network

system environment, as shown in Fig. 1,

cybercriminals or adversaries usually come

from the Internet, and attack vectors start to

formulate as companies and organizations open

up or try to access the Internet. So, suppose a

8573 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

company or organization does not have any

access to the Internet. In that case, the attack

vectors that cybercriminals or adversaries could

leverage significantly reduce local attacks,

usually an insider attack. Thus, cybercriminals

and adversaries need to go on-site and connect

to the network physically. On the other hand,

the top attacks coming from the Internet are

Web, E-mail, and file transfer. These attacks

usually compromise a workstation or client first

before moving to servers. Employees or users

using these workstations are easy to attack as

human activities tend to give more openings to

cybercriminals or adversaries, like browsing

malicious websites, downloading and opening

malicious files from the Web, E-mail, or file

transfer storage. Aside from malicious files,

client users in workstations tend to install more

applications and drivers than servers, posing a

risk if such applications have vulnerabilities or

exploit that cybercriminals or adversaries could

attack from the Internet.

According to Mitre's Windows Attack Matrix

(Matrix - Enterprise | MITRE ATT&CK®,

2020), there are nine techniques for initial

access or foothold, twelve techniques for

privilege escalation, and nine techniques for

lateral movement. The severity of initial access

attacks remains low as long as the compromised

credential is a low privilege user, such as

desktop users. However, it becomes severe if

the credentials obtained have administrative or

system privilege access. On the other hand,

privilege escalation severity is always high, as

cybercriminals aim to achieve the highest

privilege possible. Lateral movement's severity

remains low, as long the compromised

credentials do not have high or domain

administrator access privilege. The most

commonly utilized or encountered privileges in

these attacks are the Low, Medium, High, and

System mandatory level, which defines its

integrity level from Low Mandatory Level as

the lowest privilege and System as the highest

privilege (Deland-Han, 2020).

On the other hand, Table 1 shows a list of

attack types identified by the Mitre Attack

Framework. General attacks mentioned above

are composed of Layer 4 to 7 for the OSI (Open

Systems Interconnection) model (Orlowski,

2021) and Layers 3 and 4 in the TCP/IP

(Transmission Control Protocol and the Internet

Protocol) model (Yuksel & Altunay, 2020).

However, once a port and protocol have been

chosen as vulnerable for the attack, the attacks

mainly depend on the highest layer, the

application layer, especially in credential-

stealing attacks. According to (Compromised

Credential Attacks Are Frequent and Costly •

Designed Privacy, 2020), the average cost of

compromised credentials is 4.77 million US

dollars.

The majority of these attack techniques utilize

the code execution vulnerabilities in the

Microsoft Windows Environment. These code

execution vulnerabilities are being utilized by

malware to successfully compromised

workstations and servers. Data from

(Microsoft : Products and Vulnerabilities,

2020) shows that the top vulnerability in code

execution over the last 20 years. This outcome

is twice as much as the second top

vulnerability, which is Overflow. Fig. 2 shows

the number of Microsoft vulnerabilities per

year, and Fig. 3 shows the breakdown

Table 1 Windows Matrix for Initial Access, Privilege Escalation, and Lateral Movement Based

on Mitre Attack

Attack

Types
Techniques Severity Remarks

Initial

Access

Drive-by Compromise

Low to High

This attack varies depending on the

level of access achieved through

initial compromise – most common

attacks are the Drive-by

compromise, Phishing, and Valid

Accounts

Exploit Public-Facing Application

External Remote Services

Hardware Additions

Phishing

Replication Through Removable

John Martin M. Ladrido, et. al. 8574

© 2022 JPPW. All rights reserved

Attack

Types
Techniques Severity Remarks

Media

Supply Chain Compromise

Trusted Relationship

Valid Accounts

Privilege

Escalation

Abuse Elevation Control

Mechanism

High

As the cybercriminal already has

initial access or foothold with low

privilege access, privilege

escalation aims to achieve high or

system privilege. The most

common attacks are accessed token

manipulation and valid accounts

Access Token Manipulation

Boot or Login Autostart Execution

Boot or Login Initialization Scripts

Create or Modify System Process

Event-Triggered Execution

Exploitation for Privilege

Escalation

Group Policy Modification

Hijack Execution Flow

Process Injection

Scheduled Task/Job

Valid Accounts

Lateral

Movement

Exploitation of Remote Services

Low to High

This method varies depending on

the level of access being used to

navigate through the network and if

the destination is a domain server

or not. The most common attack is

the use of alternate authentication

Internal Spearphishing

Lateral Tool Transfer

Remote Service Session Hijacking

Remote Services

Replication Through Removable

Media

Software Deployment Tools

Taint Shared Content

Use Alternate Authentication

Material

Figure 3. Microsoft Vulnerabilities By

Year – Redrawn from [14]

Figure 2. Microsoft Vulnerabity Types

Breakdown from 1999 to 2019 – Redrawn

from [14]

of vulnerability types in the last 20 years. These

vulnerabilities have been weaponized and have

8575 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

been packaged in the form of malicious

software or malware.

This paper identified scenarios to address these

problems encountered by companies and

organizations where an attacker gains access

from the Internet until the cybercriminal or

adversary steals or achieves credentials with

high privilege-level access, and ultimately the

Domain Administrator credentials using

malicious binaries and executables. This setup

can equip or provide knowledge to the person in

charge or authority on how these attacks'

methods are formulated from a cybercriminal's

or adversary's perspective. After the malicious

binaries and executables used in common attack

techniques have been identified, each binary

payloads and executables used in the attacks

were evaluated in a third-party scanning engine

and, at the same time, used to design and

evaluate a machine learning-based detection

technique for comparison and to protect these

companies or organizations from

cybercriminals' and adversaries' attacks and

exploits.

II. LITERATURE REVIEW

Existing Work on Detection and Mitigation

Methods for Windows Environment Attacks

Based on existing studies, detection and

mitigation methods varies from manual

configurations, using algorithms, and up to

creating traffic visualization. Studies

implementing algorithms in detecting malicious

software and activity mostly use machine

learning in evaluating Windows event viewers.

Sample works that are using machine learning

in detecting malicious payloads and activities

are, (Mikhail et al., 2020), which has installed a

Sysmon executable in a host to gather logs and

implement Random Forest machine learning

algorithm to detect credential dumping, service

creation, scheduled task creation, process

injection, and Regsvr32 attacks. The result of

that study shows that the threshold is directly

proportional to the false positive rate. This

result means that if a system detects 100% true

positive, false positive rate detection increases.

Another work is by (Voris et al., 2019), which

uses machine learning to monitor user system

behavior patterns to detect masquerading or

impersonation attacks. The result of (Voris et

al., 2019) in Table 2 is similar to (Mikhail et al.,

2020) as to accuracy in detecting true positive

increases, false-positive increases.

On the other hand, (Matsuda et al., 2018)

evaluated Support Vector Machine, Isolation

Forest, and Local Outlier Factor machine

learning algorithms to detect Golden Ticket and

Privilege Escalation attacks with Windows

Event logs. Support Vector Machine algorithm

yields high precision and accuracy results

compared to the other two algorithms shown in

Table 2. Next, (Hsieh et al., 2015) used the

Markov machine learning model to detect

anomalous behavior in Windows Active

Directory logins. The result in Table 2 shows

that the achievable accuracy is only at 66%.

(Hsieh et al., 2015) concluded that this

performance in detecting anomalies is due to

Active Directory log limitations.

Other works focused on detecting anomalous

behaviors or related attacks and do not use

machine learning-based algorithms but use

simple algorithms such as filtering keywords or

strings and event taggings in Windows event

viewer are, (Kotlaba et al., 2020) uses

Powershell with honeypots to detect credential

dumping and Kerberos authentication attacks.

(Fujimoto et al., 2018) proposed an algorithm to

filter event IDs to detect Golden ticket or

privilege escalation attacks. While (Siadati &

Memon, 2017) uses a pattern mining algorithm

to detect malicious logins or lateral movement

attacks, and (Siadati et al., 2016) created a

graphic user interface that illustrates pattern

behavior to detect malicious logins using visual

correlation and login events. It should be noted

that future recommendations of these works

may use a machine learning-based algorithm as

recommended by authors.

Related works that do not use detection

methods but manually configure the

environment to enforce protection in the

Windows environment are, (Nair & Sridaran,

2019), which implements best practice account

and password creation to mitigate attacks such

John Martin M. Ladrido, et. al. 8576

© 2022 JPPW. All rights reserved

as Dictionary, Brute force, Rainbow Table,

Phishing, Social Engineering, Malware, Offline

Cracking, Shoulder Surfing, Spidering and

Guessing attacks. (Sindiren & Ciylan, 2019)

created an application model Privileged

Account Access Control System to mitigate

Dictionary, Brute force, Rainbow Table, Pass-

the-Hash, Man in the Middle, and Sniffing

attacks. While (Jillepalli et al., 2018) used

Group Policy Object (GPO) and Active

Directory Services to harden browser-related

attacks such as JavaScript and Plugin-based and

Phishing attacks. (Binduf et al., 2018) on the

other hand, it applies the principle of least

privilege to mitigate privilege escalation

attacks, and (Wang & Gong, 2016) implements

a centralized single sign-on (SSO) to protect

application credentials. Aside from these

manual configurations to harden the Windows

environment, a different work by (Freitas et al.,

2020) does not detect or mitigate Windows-

related attacks but a framework to identify

clients 2machines at-risk to lateral movement

attacks.

The available related works on defending and

securing the Windows environment from

attacks are still a mix of static or manual

configuration. At the same time, it is still low

compared to full-blown machine learning-based

algorithm detection methods. This literature

review shows that many security researchers

still consider machine learning-based detection

to produce unreliable results because a robust or

static configuration yields a 100% result in

known or signature-based attacks. However,

advantages show that machine learning-based

detection methods can detect unknown or zero-

day attacks.

Table 2 Studies Using Machine Learning Algorithm for Detection

Study Detection Algorithm False

Positive

Rate (%)

Recall

(%)

Precision

(%)

Accuracy (%)

(Mikhail et al., 2020)

Sensitivity Plot to Detect New

Service Creation

Random Forest 1.5 - - Able to

detect

(Binary

Validation)

(Voris et al., 2019)

Masqueraders Detection

Accuracy

Gaussian Mixture

Model

1 - - 68

(Matsuda et al., 2018) Results

for each Algorithm

One-Class SVM - 100 100 100

LOF - 5 7 74

Isolation Forest - 43 90 50

(Hsieh et al., 2015)

Performance Evaluation

Trendmicro and

Markov Model

- 66.60 99.07 66.34

Lacking in the Approaches

The aforementioned related literature lacks the

capabilities to detect unknown or zero-day

attacks that this proposal intends to overcome.

The studies of (Binduf et al., 2018; Freitas et

al., 2020; Jillepalli et al., 2018; Nair &

Sridaran, 2019; Sindiren & Ciylan, 2019; Wang

& Gong, 2016) perform manual configuration

to mitigate or block specific attacks would not

be able to block unknown or zero-day attacks.

On the other hand, related works in protecting

the Windows environment that uses algorithms

but does not use machine learning-based

algorithms have identical capabilities in

blocking Windows attacks. The only significant

advantage of this is its automation compared to

the studies listed above. These studies are as

follows: (Kotlaba et al., 2020), which uses

Splunk Processing Language, only detects

attacks that are programmed to it for querying

or filtering, (Fujimoto et al., 2018) proposed to

utilized machine learning in future research to

reduce false positive detection, (Siadati &

Memon, 2017) use pattern mining with low

accuracy results, and (Siadati et al., 2016)

which uses a graphic user interface proposed

exploring algorithm designs for future research.

8577 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

On the other hand, related literature that is

working on detection methods using machine

learning, such as the work of (Mikhail et al.,

2020), heavily relies on the logs produced by

Sysmon, which is fed to a central logging

aggregator or Security Incident and Event

Manager (SIEM) for its input parameters. This

method creates latency in producing results as

the Sysmon installed in the host or client needs

to be fed to the SIEM. On the other hand, the

study of (Voris et al., 2019) uses file details in

its input parameters. This input parameter or

feature is not enough to determine whether a

file is malicious or benign. The study of (Voris

et al., 2019) yields an accuracy of 54% with a

False Positive Rate (FPR) of 0.2%. (Matsuda et

al., 2018) evaluated three machine learning

algorithms, which is a good start. However, the

input parameters are specific event ID logs,

which are far too simple for input parameters

for a machine learning-based algorithm. This

method does not work for unrecognizable

attacks with event IDs alone and to be used as

an input feature to train the machine learning-

based algorithm. The study in (Hsieh et al.,

2015) utilized Active Directory logs as its input

parameters, which were admitted in their

conclusions to be insufficient to detect

malicious behaviors or Windows attacks.

In addition to the lacking approaches, none of

the related works deeply tackled how the

attacks were performed to generate logs

gathered with the corresponding attacks. Some

enumerated the malicious binaries and

executables they have used in their study, but

none explained how it was used, executed, or

weaponized. Some related works only gathered

samples or pre-generated data, without even

discussing how an attack from an attacker's

point-of-view is executed. As a result, most of

the studies used Windows event viewer logs as

their input features and parameters.

Summary

Related studies are divided into protecting the

Windows environment from manual

configuration, non-machine learning-based

algorithms, and machine learning-based

algorithms. Currently, security researchers still

opt for manual configuration and non-machine

learning-based algorithms as these approaches

give 100% reliability in detecting known and

signature-based attacks. It is still experimental

for machine learning-based algorithms. Most

companies or organizations using machine

learning-based detection methods are running it

on top of the traditional or signature-based

detection methods. The data obtained from

these studies primarily differ as the authors

evaluated different scenarios and used different

input parameters. However, most of the studies

used the Windows event viewer logs as their

input parameters. No specific machine learning-

based algorithm was proposed except for

(Matsuda et al., 2018) Support Machine Vector.

The challenge is still finding the optimum input

feature parameters that can yield high accuracy

and low false-positive rate.

III. WINDOWS COMMON ATTACK

TECHNIQUES

Client-side Attacks

Client-side attacks are the stepping stones or

initial access attacks to compromise the whole

network or system fully. These attacks are

commonly performed using the Web browser or

HTTP/S (Hypertext Transfer Protocol or

Hypertext Transfer Protocol Secure) and E-

mail. Thus the Victim's machine must be

connected to the Internet. The Web attack

occurs when an unaware user browses

malicious sites and tries to download a

malicious file. This malicious file contains a

malicious code that triggers a backdoor. This

backdoor is a path or a connection from the

Victim's machine to the Attacker's machine.

The exact mechanism applies to the E-mail

attack. An E-mail either contains a malicious

URL link that deceives the recipient to click

and browse the URL link, or the E-mail

contains a malicious attachment that triggers the

malicious code when downloaded and executed.

Fig. 4 shows a high overview of how the

adversary or cybercriminal gains initial access

to the Victim's machine using this client-side

attack. According to (Malicious Attachments

Remain a Cybercriminal Threat Vector

John Martin M. Ladrido, et. al. 8578

© 2022 JPPW. All rights reserved

Favorite, 2020), malicious attachments are the

oldest trick in spreading malware. However, it

is still one of the top threat vectors in the

cybercriminal world.

Figure 4. Client-side Attack High Overview

The list of available Initial Access or Client-

side attacks that weaponizes malicious binaries

and executables are as follows:

• Hypertext Markup Language (HTML)

Application – Victim Windows machine needs

to browse the malicious Unifrom Resource

Locator (URL).

• Microsoft Office Macro – Victim

Windows machine needs to open up the

malicious Word document.

• Object Linking and Embedding –

Victim Windows machine needs to open up the

malicious Word document and execute the

embedded object.

• Malicious Code – Victim Windows

machine needs to execute the malicious

executable.

• Remote Process Memory Injection -

Victim Windows machine needs to execute the

malicious Powershell script.

• Shellcode Injection – Victim Windows

machine needs to execute the malicious

executable process by shellcode injection tool

or Shellter (Shellter | Shellter, 2020).

Privilege Escalation Attacks

After the adversary or cybercriminal gains

initial access, the next step is to perform a

Privilege Escalation attack if the user privilege

initially gained has insufficient privilege.

Privilege Escalation enables the adversaries or

cybercriminals to gain higher privileges that

would allow them to explore the network

further or gain access to sensitive files and data,

including credentials. Samples of high privilege

accounts are local administrators (Local

admins), SYSTEM users, and Domain admins.

According to (Fujimoto et al., 2018; Matsuda et

al., 2018), domain admin privilege can be used

to obtain long-term administrator privilege or

access any machines that are part of the

domain. This access falls under Lateral

Movement attacks.

On the other hand, Local Administrators can be

elevated further to System Users who are

allowed to dump user credentials or password

hashes coming from the Security Account

Manager (SAM) database and capture Kerberos

tickets at the same time. SAM database contains

password hashes, either in LAN Manager (LM)

or New Technology LAN Manager (NTLM)

hash format. The most well-known binary that

is being used in this credential dumping attack

is Mimikatz.

The list of available Privilege Escalation attacks

that weaponize malicious binaries and

executables are as follows:

• Enumerate Readable and Writable Files

and Directories – The AccessChk binary from

(markruss, 2020a) is used to identify world-

writable files or directories overwritten by

malicious binaries or reverse shell to elevate

privileges.

• Enumerate Device Drivers and Kernel

Modules - The Driverquery binary from (eross-

msft, 2020a) is used to list driver versions and

verify if an exploit is available for the listed

driver versions.

• Automated Enumeration – The

Windows-privesc-check binary from

(pentestmonkey, 2015/2020) is used to

automatically enumerate the information and

vulnerabilities of the system that can be used

for privilege escalation.

• Additional Binaries (Sigcheck, Icalcs,

Juicy Potato, and Mimikatz) - The Sigcheck

binary from (markruss, 2020c) is used to verify

8579 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

the integrity level and permission to run a

process. The Icacls binary from (eross-msft,

2020b) is used to enumerate associated

permissions. The Juicy Potato binary from

(Juicy Potato (Abusing the Golden Privileges),

2020) is used to exploit SeImpersonate

privilege from Windows service accounts to

system privilege. The Mimikatz binary from

(dimi, 2020) elevates security tokens from

administrator to system privilege. These four

binaries are commonly abused for privilege

escalation attacks.

Lateral Movement Attacks

Lateral Movement attacks are performed to gain

high-valued targets or to explore the network

entirely. By leveraging the Privilege Escalation

attack or obtaining domain admin credentials,

Kerberos tickets, or password hashes, this can

be used to access other machines or servers

within the network. The attacks that are

commonly performed under Lateral Movement

attack are:

• Pass the Hash – by using the stolen

hash, the attacker can authenticate to a remote

machine. This only works with NTLM

authentication. The pth-winexe binary from

(byt3bl33d3r, 2015/2020, p. 3) is used to

authenticate using a password hash dump

remotely.

• Overpass the Hash – Using the stolen

NTLM hash, the attacker can gain a Kerberos

Ticket Granting Ticket, allowing the attacker to

authenticate to a remote machine. The PsExec

binary from (markruss, 2020b) is used to obtain

remote code execution using generated

Kerberos tickets and impersonate a domain

user.

• Pass the Ticket – This attack leverages

Kerberos Ticket Granting Service, which offers

more flexibility than Kerberos Ticket Granting

Ticket since it can be used to a specific service

and not only in a specific machine. This attack

leverages the Mimikatz binary mentioned above

to craft a silver ticket for remote code

execution.

• Golden Ticket – This attack aims to

create a custom-made Kerberos Ticket

Granting Ticket by obtaining the KRBTGT

password hash. This attack covers PsExec and

Mimikatz binaries' combination usage.

IV. MACHINE LEARNING-BASED

DETECTORS

Logistic Regression

Logistic Regression machine learning-based

detector is implemented to identify malicious

and benign samples. The Logistic Regression

model creates a boundary to identify whether

the sample is malicious or benign. The negative

log-likelihood depicts the loss function of

Logistic Regression is

ℓ({𝑝𝑖}, {𝑦𝑖}) = ∑ ((1 − 𝑦𝑖) log(1 −𝑖

𝑝𝑖) + 𝑦𝑖 log 𝑝𝑖

(1)

where {𝑝𝑖} stands for probability predictions

and {𝑦𝑖} stands for truth labels. The likelihood

of all predictions is shown below as the product

of each likelihood:

ℒ({𝑝𝑖}, {𝑦𝑖}) = ∏ 1 − 𝑝𝑖𝑦𝑖=0 . ∏ 𝑝𝑖𝑦𝑖=1 (2)

Logistic Regression aims to search for the best

parameters that produce the probabilities that

optimize or maximize the likelihood. Logistic

Regression identifies the binaries or executables

using a hyperplane. The hyperplane depends on

the number of fed or configured features to the

logistic regression algorithm, which

geometrically separates malicious from benign

samples. When a sample or an unseen binary or

executable is fed into the detector, Logistic

Regression classifies the sample on the

malicious or benign side of the boundary.

Sklearn.Linear_model.LogisticRegression is

used in constructing Logistic Regression

machine learning detector

(Sklearn.Linear_model.LogisticRegression —

Scikit-Learn 0.23.2 Documentation, 2020).

Random Forest

Random Forest machine learning-based

detector is implemented to identify malicious

and benign samples. The Random Forest model

heavily relies on decision trees, and each

decision tree votes to identify whether the

sample is malicious or benign. The Random

Forest algorithm workflow is as follows:

John Martin M. Ladrido, et. al. 8580

© 2022 JPPW. All rights reserved

1. A random subset of N samples

(trained individual trees) from the

training dataset is chosen.

2. Random X features are chosen

from the available Y features on each

split point, and the optimal split point is

chosen among these X features, where X

≤ Y.

3. Do step 2 until each tree is

trained.

4. Do steps 1, 2, and 3 until all

trees in the forest are trained.

The probability that a binary or executable is

identified, whether malicious or benign,

depends on the number of decision tree votes

divided by the total number of decision trees.

Sklearn.Ensemble.RandomForestCLassifier is

used in constructing the Random Forest

machine learning detector (3.2.4.3.1.

Sklearn.Ensemble.RandomForestClassifier —

Scikit-Learn 0.23.2 Documentation, 2020).

Support Vector Machines

Support Vector Machine (SVM) learning-based

detector is implemented to identify malicious

and benign samples. SVM creates a hyperplane

like logistic Regression, and the difference

between the two is the loss function. SVM

implements hinge loss which penalizes samples

that are on the wrong side only. In contrast,

logistic Regression implements a log-likelihood

function that penalizes all samples

proportionally to the probability error estimate.

The loss function of the support vector machine

is shown

𝛃 + 𝑪 ∑ 𝝃𝒊
𝑵
𝒊 = 𝟏 (3)

where the margin is 𝛃, the hyperparameter that

is relative to the contribution of the two terms is

𝑪, and the distance of the margin to the 𝒊th

support vector is 𝝃𝒊. Sklearn.Svm.SVC is used

in constructing the Support Vector Machine

detector (Sklearn.Svm.SVC — Scikit-Learn

0.24.2 Documentation, 2021).

Neural Network

Another algorithm is the Neural Networks (NN)

or Artificial Neural Network (ANN), as shown

in Fig. 5. It is a profound interconnection of a

primary computational factor known as a

perceptron, which are fundamental models of

neurons in the human brain. Its architecture and

calculation are utterly parallel networks of

distinct computational elements systematized in

correlation to each other. The learning process

in this kind of algorithm is apparent in a

manner. It can also produce accurate and

reliable expected results or outputs.

Figure 5. The Architecture of the Neural

Network

The input layer on the left side consists of a set

of new neurons 𝒙𝒊 which represent the input

{𝒙𝒊|𝒙𝟏, 𝒙𝟐, 𝒙𝟑, . . . , 𝒙𝒏}. (4)

The middle, which is the hidden layer,

transforms previous layers' values using linear

weights 𝑤𝑖 summation

{𝒘𝒊𝒙𝒊 + 𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐

+ 𝒘𝟑𝒙𝟑+. . . +𝒘𝒏𝒙𝒏}

(5)

and nonlinear activation function such as

rectified linear unit 𝑹(𝒛) (ReLU) with 𝒛 as

input is applied.

𝑹(𝒛) = max(𝟎, 𝒛) (6)

To optimize the parameters with

backpropagation, this activation function or

ReLU applies a nonlinear transformation to the

weighted sum, resulting in the neuron's input

data linear transformation. After that, the last

layer or the right side, the output layer, retrieves

the values from the last hidden layer,

transforming and outputs them.

Sklearn.Neural_network.MLPClassifier is used

in constructing Neural Network detector (1.17.

Neural Network Models (Supervised) — Scikit-

Learn 0.24.2 Documentation, 2021).

V. RESULTS AND DISCUSSION

8581 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

The previous section provided an overview of

the three common Windows attack techniques

and introduced the binaries and executables

used in the attacks. Section Machine Learning-

based Detectors discussed the machine learning

algorithms that were used in constructing the

detector. Scikit-Learn library for hashing input

features such as FeatureHasher and creating a

machine learning-based detector using Logistic

Regression, Random Forest, Support Vector

Machine, and Neural Network covered in Sec.

Machine Learning-based Detectors. These tools

and libraries have been used to complete this

study. In addition to the machine-based detector

results, samples from the attacks were also

evaluated using VirusTotal (VirusTotal, 2020)

for third-party anti-malware engine comparison.

Training and Testing

Table 3 shows the sample dataset that has been

gathered from VirusTotal and Windows Server

2016 system32 folder. Additional samples for

testing and used in sample attacks have been

created in Kali Linux Operating System using

MSFVenom (MSFvenom | Offensive Security,

2020). The sample dataset indicates the

category, type, platform, alias, quantity, or the

number of samples. This dataset is the sample

used for training and testing the machine

learning-based detector.

Table 3 Sample Dataset

Category Type Platform Alias Quantity Alias Quantity Alias Quantity

Malware Backdoor Win32 No-Alias 35 Delf 8 IRCBot 8

Asper 1 Donbot 1 Koutodoor 1

Banito 1 DsBot 19 LolBot 3

Beastdoor 1 Dusta 1 MeSub 1

Bifrose 106 FirstInj 5 Netbus 1

BlackHole 54 Floder 1 Nucleroot 1

Bredolab 26 FlyAgent 1 Papras 10

Ciadoor 2 Gbot 32 PcClient 2

Cinkel 1 Gnutler 1 Poison 31

Clemag 7 Httpbot 1 Portless 1

Curioso 1 Hupigon 50 Prorat 10

DDOS 1 Inject 2

For Testing Customize Win32 - 14

Benign DLL Win32 - 405

Benign Executable Win32 - 96

The first step in this training and testing process

is to extract the string features of the samples.

However, the output of string feature extraction

produces too many features that a machine

learning algorithm could handle and causes

memory issues. For example, if sample one

contains the string "malicious sample" and the

second sample contains a string "malicious

sample!" this is treated as two separate features.

This example means that it quickly encounters

too many unique strings that end up being used

for training the detector. Secondly, suppose that

the output has around one thousand features,

and the samples available are also around one

thousand. In this case, the samples would not be

enough to train the machine learning-based

detector of what each of the features describes a

given binary or simply known as the curse of

dimensionality.

A hashing trick has been implemented—feature

hashing from scikit-learn (6.2. Feature

Extraction — Scikit-Learn 0.23.2

Documentation, 2020), also known as

FeatureHasher, has been applied to overcome

the problem of having too many features. By

applying FeatureHasher, the extracted features

are encoded in a vectorized form instead of

building a hash table. A limit is also assigned

for the length of the feature matrix.

After extracting and hashing the input features

from binaries and executables, it can now train

the machine learning-based detector. After the

training has been performed, the detector can

detect new binaries and executables to classify

John Martin M. Ladrido, et. al. 8582

© 2022 JPPW. All rights reserved

whether it is benign or malicious. Several

detector algorithms were implemented and

evaluated. The machine learning-based

detectors evaluated are Logistic Regression,

Random Forest, Support Vector Machine, and

Neural Network. Due to the related studies of

(Mikhail et al., 2020) and (Voris et al., 2019),

not mentioning what type of machine learning

they have implemented, Support Vector

Machines has been chosen because of (Matsuda

et al., 2018) study in Support Vector Machines

which yielded a high accuracy result and uses

regression analysis and binary linear classifier.

In addition to this, Logistic Regression machine

learning has also been evaluated because it is

also under a linear classifier and one of the

basic ones.

On the other hand, Random Forest machine

learning has higher complexity. It is under the

same supervised learning model as the Logistic

Regression machine learning has been covered

and evaluated because of its nature from the

Binary or Decision Tree machine learning

algorithm used to solve detection problems.

Neural Network, a prerequisite for more

complex algorithms such as Deep and

Reinforcement Learning, is evaluated.

Unsupervised learning is not covered, as there

is no way to train the detector for false positives

and false negatives for immediate results,

making it less effective in detecting malicious

or benign binaries and executables. Python

programming language has been used in

creating these detectors as scikit library is using

Python language.

Machine Learning Results without Sample

Training

Figure 6 was tested without adding the samples

for testing in training samples. The result shown

in Fig. 6 shows that around half of the samples

for testing are indistinguishable without adding

the sample for testing in training the machine

learning-based detectors. Relevant accuracy

value in results or removing outliers shows that

Support Vector Machine has detection accuracy

at 93.23%, followed by Random Forest at

75.25%. While without removing the outliers

and including all the testing results, Support

Vector Machine has detection accuracy at

53.35%, followed by Random Forest at 50.36%.

This result shows that the Support Vector

Machine followed by Random Forest has the

top results in determining whether a binary or

executable is malicious or benign.

Machine Learning Results with Sample

Training

Figure 7 was tested by adding the samples for

testing in training samples. The result shown in

Fig. 7 shows that the detection or classification

of malicious samples significantly improved

when the testing samples are added in training

the machine learning-based detectors. However,

the Support Vector Machine's performance

stays the same while the three detectors

significantly improve their accuracy. The

sample results are the same as above upon the

removal of outliers. It shows that Artificial

Neural Network has detection accuracy at

99.98%, followed by Logistic Regression at

99.71%. While without removing the outliers

and including all the testing results, Logistic

Regression has detection accuracy at 94.42%,

followed by Artificial Neural Network at

93.15%. On this result, Logistic Regression and

Artificial Neural Network take the lead in the

accuracy of classifying or detecting malicious

samples.

Machine Learning Processing Time

Figure 8 shows each machine learning-based

detector's processing or execution time on

classifying or identifying the testing samples,

whether it is malicious or benign. The result

shown in Fig. 8 shows that the processing time

of the Support Vector Machine is high at 1809

milliseconds without adding testing samples in

training samples and 1841 milliseconds with

adding testing samples in training samples,

followed by Artificial Neural Network at 979

milliseconds without adding testing samples in

training samples and 966 milliseconds with

adding testing samples in training samples. The

least or best processing time for the machine

learning algorithms is the Logistic Regression

at 24 milliseconds without adding testing

samples in training samples and 24 milliseconds

as well with adding testing samples in training

8583 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

samples, followed by Random forest at 49

milliseconds without adding testing samples in

training samples and 51 milliseconds with

adding testing samples in training samples.

Logistic Regression outperforms Random

Forest in processing or execution time by 25 to

27 milliseconds with a difference in results.

Summarized Comparative Results

Figure 9 shows the empirical cumulative

distribution results of Fig. 6 and Fig. 7. The

result shown in Fig. 9 shows that both Logistic

Regression and Artificial Neural Network have

better results with an average accuracy of

94.42% and 93.15%, respectively, when a

testing sample is added in training. Otherwise,

when a testing sample is not added in training,

Support Vector Machine followed by Random

Forest shows better results with an average

accuracy of 53.35% and 50.36%, respectively.

A third-party scanning engine or VirusTotal

result was added in Fig. 9, and the data of

VirusTotal is an aggregation of different anti-

malware vendors or scanning engines, where

the accuracy 𝑉T results are equal to the total

anti-malware engines that can classify the

malicious sample correctly 𝐷T divided by the

total number of anti-malware engines 𝐸T that

was processed when the sample for testing was

submitted in VirusTotal, as shown in (7).

𝑽T =
𝑫T

𝑬T
⁄ (7)

VirusTotal results in more than 50% of anti-

malware engines cannot classify the malicious

samples correctly, with a 39.02% overall

accuracy results of all combined third-party

scanning engines in identifying all testing

samples used in machine learning-based

detectors.

VI. CONCLUSION

Fig. 9 shows that the created machine learning-

based detector performs better in identifying or

classifying the malicious samples than current

anti-malware products. The learning-based

detector performs better in identifying or

classifying the malicious. Among the list of

machine learning-based detectors evaluated,

with testing samples included in the training,

Logistic Regression performed better in

accuracy and processing time than other

machine learning-based detectors. However, if

testing samples are not included in the training,

the Support Vector Machine came on top.

Figure 6. Machine Learning Accuracy Results (Without Sample Training)

John Martin M. Ladrido, et. al. 8584

© 2022 JPPW. All rights reserved

Figure 7. Machine Learning Accuracy Results (With Sample Training)

Figure 8. Machine Learning Processing Time Results

8585 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

Figure 9. Empirical Cumulative Distribution of Results

Implementing this machine learning-based

detector makes it possible to detect the malware

used in zero-day attacks or attacks explicitly

improvised for such an organization or

company without relying on a third-party

vendor or product. In addition, Organizations or

companies do not need to wait for vendors or

third-party malware detectors to release

signatures or indicators to remediate this

malware used in the attacks. Having the

capability to block such attacks results in fewer

organizations and companies being

compromised and exploited by Cybercriminals.

For future studies, it is recommended to

evaluate other machine learning algorithms

such as Nearest Neighbors and Semi-supervised

learning. In addition to string as an input

feature, it would also be for future research to

add or combine other input features such as

portable executable headers, assembly

instructions, import address translation, and N-

grams with string. The aim would be to classify

or detect benign or malicious samples more

accurately with the shortest processing or

execution time, equating to fewer resources

consumed, such as memory and process.

ACKNOWLEDGMENT

De La Salle University is acknowledged for

supporting this work.

BIBLIOGRAPHY

1. 1.17. Neural network models

(supervised)—Scikit-learn 0.24.2

documentation. (2021). https://scikit-

learn.org/stable/modules/neural_netwo

rks_supervised.html#classification

2. 3.2.4.3.1.

Sklearn.ensemble.RandomForestClassi

fier—Scikit-learn 0.23.2

documentation. (2020). https://scikit-

learn.org/stable/modules/generated/skl

earn.ensemble.RandomForestClassifie

r.html

3. 6.2. Feature extraction—Scikit-learn

0.23.2 documentation. (2020).

https://scikit-

learn.org/stable/modules/feature_extra

ction.html

4. Another massive ransomware outbreak

– or was it? (2017). Computer Fraud &

Security, 2017(7), 1–3.

John Martin M. Ladrido, et. al. 8586

© 2022 JPPW. All rights reserved

https://doi.org/10.1016/S1361-

3723(17)30055-6

5. Binduf, A., Alamoudi, H., Balahmar,

H., Alshamrani, S., Al-Omar, H., &

Nagy, N. (2018). Active Directory and

Related Aspects of Security. 4474–

4479.

https://doi.org/10.1109/NCG.2018.859

3188

6. byt3bl33d3r. (2020). Byt3bl33d3r/pth-

toolkit [Python].

https://github.com/byt3bl33d3r/pth-

toolkit (Original work published 2015)

7. Cimpanu, C. (2020). Financial sector

is seeing more credential stuffing than

DDoS attacks. ZDNet.

https://www.zdnet.com/article/financia

l-sector-has-been-seeing-more-

credential-stuffing-than-ddos-attacks-

in-recent-years/

8. Compromised Credential Attacks are

Frequent and Costly • Designed

Privacy. (2020).

https://designedprivacy.com/comprom

ised-credential-attacks-are-frequent-

and-costly/

9. Deland-Han. (2020). Security

identifiers in Windows—Windows

Server. https://docs.microsoft.com/en-

us/troubleshoot/windows-

server/identity/security-identifiers-in-

windows

10. dimi. (2020). (0x64 ∧ 0x6d) ∨ 0x69 ~

mimikatz: Deep dive on lsadump::lsa

/patch and /inject.

https://blog.3or.de/mimikatz-deep-

dive-on-lsadumplsa-patch-and-

inject.html

11. eross-msft. (2020a). Driverquery.

https://docs.microsoft.com/en-

us/windows-

server/administration/windows-

commands/driverquery

12. eross-msft. (2020b). Icacls.

https://docs.microsoft.com/en-

us/windows-

server/administration/windows-

commands/icacls

13. Freitas, S., Wicker, A., Chau, D. H., &

Neil, J. (2020). D2M: Dynamic

Defense and Modeling of Adversarial

Movement in Networks.

14. Fujimoto, M., Matsuda, W., &

Mitsunaga, T. (2018). Detecting

Abuse of Domain Administrator

Privilege Using Windows Event Log.

2018 IEEE Conference on

Application, Information and Network

Security (AINS), 15–20.

https://doi.org/10.1109/AINS.2018.86

31459

15. Heritage, I. (2019). Protecting Industry

4.0: Challenges and solutions as IT,

OT and IP converge. Network

Security, 2019(10), 6–9.

https://doi.org/10.1016/S1353-

4858(19)30120-5

16. Hsieh, C., Lai, C., Mao, C., Kao, T., &

Lee, K. (2015). AD2: Anomaly

detection on active directory log data

for insider threat monitoring. 2015

International Carnahan Conference on

Security Technology (ICCST), 287–

292.

https://doi.org/10.1109/CCST.2015.73

89698

17. Jillepalli, A., Conte de Leon, D.,

Sheldon, F. T., & Haney, M. (2018).

Enterprise-level Hardening of Web

Browsers for Microsoft Windows. 7,

261–274.

https://doi.org/10.12785/ijcds/070501

18. Juicy Potato (abusing the golden

privileges). (2020). Juicy-Potato.

http://ohpe.it/juicy-potato/

19. Kotlaba, L., Buchovecká, S., &

Lórencz, R. (2020). Active Directory

Kerberoasting Attack: Monitoring and

Detection Techniques. ICISSP.

20. Lemay, A., Calvet, J., Menet, F., &

Fernandez, J. M. (2018). Survey of

publicly available reports on advanced

persistent threat actors. Computers &

Security, 72, 26–59.

https://doi.org/10.1016/j.cose.2017.08.

005

8587 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

21. Malicious Attachments Remain a

Cybercriminal Threat Vector Favorite.

(2020).

https://threatpost.com/malicious-

attachments-remain-a-cybercriminal-

threat-vector-favorite/158631/

22. Mansfield-Devine, S. (2017).

Editorial. Computer Fraud & Security,

2017(7), 2.

https://doi.org/10.1016/S1361-

3723(17)30056-8

23. markruss. (2020a). AccessChk—

Windows Sysinternals.

https://docs.microsoft.com/en-

us/sysinternals/downloads/accesschk

24. markruss. (2020b). PsExec—Windows

Sysinternals.

https://docs.microsoft.com/en-

us/sysinternals/downloads/psexec

25. markruss. (2020c). Sigcheck—

Windows Sysinternals.

https://docs.microsoft.com/en-

us/sysinternals/downloads/sigcheck

26. Matrix—Enterprise | MITRE

ATT&CK®. (2020).

https://attack.mitre.org/matrices/enterp

rise/windows/#

27. Matsuda, W., Fujimoto, M., &

Mitsunaga, T. (2018). Detecting APT

Attacks Against Active Directory

Using Machine Leaning. 2018 IEEE

Conference on Application,

Information and Network Security

(AINS), 60–65.

https://doi.org/10.1109/AINS.2018.86

31486

28. Microsoft: Products and

vulnerabilities. (2020).

https://www.cvedetails.com/vendor/26

/Microsoft.html

29. Microsoft report shows increasing

sophistication of cyber threats. (2020,

September 29). Microsoft on the

Issues. https://blogs.microsoft.com/on-

the-issues/2020/09/29/microsoft-

digital-defense-report-cyber-threats/

30. Mikhail, J. W., Williams, J. C., &

Roelke, G. R. (2020). procmonML:

Generating evasion resilient host-

based behavioral analytics from tree

ensembles. Computers & Security, 98,

102002.

https://doi.org/10.1016/j.cose.2020.10

2002

31. MSFvenom | Offensive Security.

(2020). https://www.offensive-

security.com/metasploit-

unleashed/msfvenom/

32. Nair, H., & Sridaran, R. (2019). An

Innovative Model (HS) to Enhance the

Security in Windows Operating

System—A Case Study. 2019 6th

International Conference on

Computing for Sustainable Global

Development (INDIACom), 1207–

1211.

33. Orlowski, C. (2021). Chapter 2—

Architectures and reference models in

designing Internet of Things systems.

In C. Orlowski (Ed.), Management of

IOT Open Data Projects in Smart

Cities (pp. 43–86). Academic Press.

https://doi.org/10.1016/B978-0-12-

818779-1.00002-X

34. pentestmonkey. (2020).

Pentestmonkey/windows-privesc-

check [Python].

https://github.com/pentestmonkey/win

dows-privesc-check (Original work

published 2015)

35. Ransomware Upgrades with

Credential-Stealing Tricks. (2020).

Dark Reading.

https://www.darkreading.com/attacks-

breaches/ransomware-upgrades-with-

credential-stealing-tricks/d/d-

id/1336846

36. Shellter | Shellter. (2020).

https://www.ShellterProject.com/intro

ducing-shellter/

37. Siadati, H., & Memon, N. (2017).

Detecting Structurally Anomalous

Logins Within Enterprise Networks.

1273–1284.

https://doi.org/10.1145/3133956.3134

003

John Martin M. Ladrido, et. al. 8588

© 2022 JPPW. All rights reserved

38. Siadati, H., Saket, B., & Memon, N.

(2016). Detecting malicious logins in

enterprise networks using

visualization. 2016 IEEE Symposium

on Visualization for Cyber Security

(VizSec), 1–8.

https://doi.org/10.1109/VIZSEC.2016.

7739582

39. Sindiren, E., & Ciylan, B. (2019).

Application model for privileged

account access control system in

enterprise networks. Computers &

Security, 83, 52–67.

https://doi.org/10.1016/j.cose.2019.01.

008

40. sklearn.linear_model.LogisticRegressi

on—Scikit-learn 0.23.2

documentation. (2020). https://scikit-

learn.org/stable/modules/generated/skl

earn.linear_model.LogisticRegression.

html

41. Sklearn.svm.SVC — scikit-learn

0.24.2 documentation. (2021).

https://scikit-

learn.org/stable/modules/generated/skl

earn.svm.SVC.html#sklearn.svm.SVC

42. The 2020 Data Breach Investigations

Report – a CSO's perspective—

ScienceDirect. (2020). https://0-www-

sciencedirect-

com.lib1000.dlsu.edu.ph/science/articl

e/pii/S1353485820300799

43. VirusTotal. (2020).

https://www.virustotal.com/gui/

44. Voris, J., Song, Y., Salem, M. B.,

Hershkop, S., & Stolfo, S. (2019).

Active authentication using file system

decoys and user behavior modeling:

Results of a large scale study.

Computers & Security, 87, 101412.

https://doi.org/10.1016/j.cose.2018.07.

021

45. Wang, H., & Gong, C. (2016). Design

and Implementation of Unified

Identity Authentication Service Based

on AD. 2016 8th International

Conference on Computational

Intelligence and Communication

Networks (CICN), 394–398.

https://doi.org/10.1109/CICN.2016.84

46. Yuksel, H., & Altunay, Ö. (2020).

Host-to-host TCP/IP connection over

serial ports using visible light

communication. Physical

Communication, 43, 101222.

https://doi.org/10.1016/j.phycom.2020

.101222

