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Abstract 

In digital networks, the most common goal of cybercriminals is to steal high-privilege credentials or 

valuable data. By obtaining high-privilege credentials, cybercriminals can easily navigate, destroy, or 

steal an organization's data, such as bank details, personal data, and intellectual properties. With the 

advent of information technology and operational technology convergence like the Internet of things 

(IoT), it becomes more critical on protecting the high-privilege credentials as cybercriminals can have 

the power to control operational technologies such as industrial control systems (ICS) and supervisory 

control and data acquisition (SCADA). Unfortunately, even with this information, many organizations 

are easily susceptible to these attacks, especially manufacturing firms. This paper presents how 

cybercriminals from the Internet can utilize malicious payloads and executables to compromise an 

organization. The proposed approach also shows how organizations can detect those using an (ML) 

machine learning-based detection by collecting the malicious executables and binaries used in the 

attacks. Doing so could help organizations to be equipped with proper knowledge in understanding 

the underlying attack and, at the same time, implementing their detection mechanism specific to the 

cybercriminals attacking their network. The results show that the machine learning-based detector can 

identify the samples, whether malicious or benign. 

Keywords: advanced persistent threat, malware, machine learning, client-side attacks, privilege 

escalation, network lateral movement 

 

I. INTRODUCTION 

Today's data communication has evolved from 

the simple sender-receiver transfer of data into 

a web of information transmission from one 

network system to another network system. As 

the knowledge extracted from data and 

information becomes potentially more valuable 

than oil or gold, it is imperative to protect these 

resources from cybercriminals and adversaries. 

Aside from data and information, 

cybercriminals' common targets are industrial 

control systems and supervisory control and 

data acquisition, which leverages IoT 

technology. Microsoft's defense report 

(Microsoft Report Shows Increasing 

Sophistication of Cyber Threats, 2020) showed 

a noticeable shift of sophisticated attacks 

towards credential harvesting and ransomware. 

The total volume of attacks to IoT has increased 

by 35% in the first half of 2020. In addition, 

according to ZDNet's report using F5's statistics 

(Cimpanu, 2020), Brute Force or Credential 

Stuffing is the number one security incident at 

41%, followed by Distributed Denial-of-Service 

(DDoS) at 32%. 

On the other hand, according to (Ransomware 

Upgrades with Credential-Stealing Tricks, 

2020), Ransomware is now being utilized to 

steal credentials in commonly used browsers 

such as Google Chrome, Mozilla Firefox, and 

Microsoft Internet Explorer. In addition to its 

web browser attack vector, Ransomware has 

been upgraded to steal E-mail credentials in 

Mozilla Thunderbird and Microsoft Outlook. 
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By having high-privilege credentials to control 

workstations and servers, cybercriminals and 

adversaries have the power to sabotage 

manufacturing firms, power generating 

organizations, transportation controls, or, worst, 

nuclear and military weapons. For example, it 

was not long ago that a malware outbreak in 

Ukraine resulted in shutting down monitoring 

systems for radiation levels at the Chernobyl 

Nuclear power plant, according to ("Another 

Massive Ransomware Outbreak – or Was It?," 

2017). 

According to (Heritage, 2019), due to the 4th 

industrial revolution, cybercriminals and 

adversaries have more attack vectors nowadays 

because of information technology and 

operational technology convergence. The 

average life cycle of computer systems is 

around nine years. In comparison, machines and 

sensors from Internet-of-Things or robotics may 

last 20 to 30 years, giving cybercriminals and 

adversaries more time to discover 

vulnerabilities and exploits for such devices. 

According to (Lemay et al., 2018), the number 

of cybercriminals and adversaries is 

significantly increasing worldwide, making 

defending harder for small companies and 

organizations with a limited budget and 

personnel against cybersecurity threats. As 

such, cybersecurity is always depicted as an 

arms race between cybercriminals and security 

vendors, according to (Mansfield-Devine, 

2017), and the battleground would be the 

companies' or organizations' digital 

environment. According to (The 2020 Data 

Breach Investigations Report – a CSO's 

Perspective - ScienceDirect, 2020), the top two 

reasons why security breaches happen do not 

have enough time to identify vulnerabilities and 

attack vectors at 31%, followed by not having 

the expertise or adequate knowledge to 

remediate the vulnerabilities found at 21%. 

Thus, companies and organizations usually do 

not know how these cyber-attacks formulate 

from cybercriminals and adversaries and defend 

themselves from getting compromised.  

Figure 1.  Simple Enterprise Network Architecture 

In a company's or organization's network 

system environment, as shown in Fig. 1, 

cybercriminals or adversaries usually come 

from the Internet, and attack vectors start to 

formulate as companies and organizations open 

up or try to access the Internet. So, suppose a 
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company or organization does not have any 

access to the Internet. In that case, the attack 

vectors that cybercriminals or adversaries could 

leverage significantly reduce local attacks, 

usually an insider attack. Thus, cybercriminals 

and adversaries need to go on-site and connect 

to the network physically. On the other hand, 

the top attacks coming from the Internet are 

Web, E-mail, and file transfer. These attacks 

usually compromise a workstation or client first 

before moving to servers. Employees or users 

using these workstations are easy to attack as 

human activities tend to give more openings to 

cybercriminals or adversaries, like browsing 

malicious websites, downloading and opening 

malicious files from the Web, E-mail, or file 

transfer storage. Aside from malicious files, 

client users in workstations tend to install more 

applications and drivers than servers, posing a 

risk if such applications have vulnerabilities or 

exploit that cybercriminals or adversaries could 

attack from the Internet. 

According to Mitre's Windows Attack Matrix 

(Matrix - Enterprise | MITRE ATT&CK®, 

2020), there are nine techniques for initial 

access or foothold, twelve techniques for 

privilege escalation, and nine techniques for 

lateral movement. The severity of initial access 

attacks remains low as long as the compromised 

credential is a low privilege user, such as 

desktop users. However, it becomes severe if 

the credentials obtained have administrative or 

system privilege access. On the other hand, 

privilege escalation severity is always high, as 

cybercriminals aim to achieve the highest 

privilege possible. Lateral movement's severity 

remains low, as long the compromised 

credentials do not have high or domain 

administrator access privilege. The most 

commonly utilized or encountered privileges in 

these attacks are the Low, Medium, High, and 

System mandatory level, which defines its 

integrity level from Low Mandatory Level as 

the lowest privilege and System as the highest 

privilege (Deland-Han, 2020). 

 

On the other hand, Table 1 shows a list of 

attack types identified by the Mitre Attack 

Framework. General attacks mentioned above 

are composed of Layer 4 to 7 for the OSI (Open 

Systems Interconnection) model (Orlowski, 

2021) and Layers 3 and 4 in the TCP/IP  

(Transmission Control Protocol and the Internet 

Protocol) model (Yuksel & Altunay, 2020). 

However, once a port and protocol have been 

chosen as vulnerable for the attack, the attacks 

mainly depend on the highest layer, the 

application layer, especially in credential-

stealing attacks. According to (Compromised 

Credential Attacks Are Frequent and Costly • 

Designed Privacy, 2020), the average cost of 

compromised credentials is 4.77 million US 

dollars. 

The majority of these attack techniques utilize 

the code execution vulnerabilities in the 

Microsoft Windows Environment. These code 

execution vulnerabilities are being utilized by 

malware to successfully compromised 

workstations and servers. Data from 

(Microsoft : Products and Vulnerabilities, 

2020) shows that the top vulnerability in code 

execution over the last 20 years. This outcome 

is twice as much as the second top 

vulnerability, which is Overflow. Fig. 2 shows 

the number of Microsoft vulnerabilities per 

year, and Fig. 3 shows the breakdown  

Table 1 Windows Matrix for Initial Access, Privilege Escalation, and Lateral Movement Based 

on Mitre Attack 

Attack 

Types 
Techniques Severity Remarks 

Initial 

Access 

Drive-by Compromise 

Low to High  

This attack varies depending on the 

level of access achieved through 

initial compromise – most common 

attacks are the Drive-by 

compromise, Phishing, and Valid 

Accounts 

Exploit Public-Facing Application 

External Remote Services 

Hardware Additions 

Phishing 

Replication Through Removable 
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Attack 

Types 
Techniques Severity Remarks 

Media 

Supply Chain Compromise 

Trusted Relationship 

Valid Accounts 

Privilege 

Escalation 

Abuse Elevation Control 

Mechanism 

High  

As the cybercriminal already has 

initial access or foothold with low 

privilege access, privilege 

escalation aims to achieve high or 

system privilege. The most 

common attacks are accessed token 

manipulation and valid accounts 

Access Token Manipulation 

Boot or Login Autostart Execution 

Boot or Login Initialization Scripts 

Create or Modify System Process 

Event-Triggered Execution 

Exploitation for Privilege 

Escalation 

Group Policy Modification 

Hijack Execution Flow 

Process Injection 

Scheduled Task/Job 

Valid Accounts 

Lateral 

Movement 

Exploitation of Remote Services 

Low to High 

This method varies depending on 

the level of access being used to 

navigate through the network and if 

the destination is a domain server 

or not. The most common attack is 

the use of alternate authentication 

Internal Spearphishing 

Lateral Tool Transfer 

Remote Service Session Hijacking 

Remote Services 

Replication Through Removable 

Media 

Software Deployment Tools 

Taint Shared Content 

Use Alternate Authentication 

Material 

 
Figure 3.  Microsoft Vulnerabilities By 

Year – Redrawn from [14] 

 
Figure 2.  Microsoft Vulnerabity Types 

Breakdown from 1999 to 2019 – Redrawn 

from [14] 

of vulnerability types in the last 20 years. These 

vulnerabilities have been weaponized and have 
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been packaged in the form of malicious 

software or malware. 

This paper identified scenarios to address these 

problems encountered by companies and 

organizations where an attacker gains access 

from the Internet until the cybercriminal or 

adversary steals or achieves credentials with 

high privilege-level access, and ultimately the 

Domain Administrator credentials using 

malicious binaries and executables. This setup 

can equip or provide knowledge to the person in 

charge or authority on how these attacks' 

methods are formulated from a cybercriminal's 

or adversary's perspective. After the malicious 

binaries and executables used in common attack 

techniques have been identified, each binary 

payloads and executables used in the attacks 

were evaluated in a third-party scanning engine 

and, at the same time, used to design and 

evaluate a machine learning-based detection 

technique for comparison and to protect these 

companies or organizations from 

cybercriminals' and adversaries' attacks and 

exploits. 

 

II. LITERATURE REVIEW 

Existing Work on Detection and Mitigation 

Methods for Windows Environment Attacks 

Based on existing studies, detection and 

mitigation methods varies from manual 

configurations, using algorithms, and up to 

creating traffic visualization. Studies 

implementing algorithms in detecting malicious 

software and activity mostly use machine 

learning in evaluating Windows event viewers. 

Sample works that are using machine learning 

in detecting malicious payloads and activities 

are, (Mikhail et al., 2020), which has installed a 

Sysmon executable in a host to gather logs and 

implement Random Forest machine learning 

algorithm to detect credential dumping, service 

creation, scheduled task creation, process 

injection, and Regsvr32 attacks. The result of 

that study shows that the threshold is directly 

proportional to the false positive rate. This 

result means that if a system detects 100% true 

positive, false positive rate detection increases. 

Another work is by (Voris et al., 2019), which 

uses machine learning to monitor user system 

behavior patterns to detect masquerading or 

impersonation attacks. The result of (Voris et 

al., 2019) in Table 2 is similar to (Mikhail et al., 

2020) as to accuracy in detecting true positive 

increases, false-positive increases. 

On the other hand, (Matsuda et al., 2018) 

evaluated Support Vector Machine, Isolation 

Forest, and Local Outlier Factor machine 

learning algorithms to detect Golden Ticket and 

Privilege Escalation attacks with Windows 

Event logs. Support Vector Machine algorithm 

yields high precision and accuracy results 

compared to the other two algorithms shown in 

Table 2. Next, (Hsieh et al., 2015) used the 

Markov machine learning model to detect 

anomalous behavior in Windows Active 

Directory logins. The result in Table 2 shows 

that the achievable accuracy is only at 66%. 

(Hsieh et al., 2015) concluded that this 

performance in detecting anomalies is due to 

Active Directory log limitations. 

Other works focused on detecting anomalous 

behaviors or related attacks and do not use 

machine learning-based algorithms but use 

simple algorithms such as filtering keywords or 

strings and event taggings in Windows event 

viewer are, (Kotlaba et al., 2020) uses 

Powershell with honeypots to detect credential 

dumping and Kerberos authentication attacks. 

(Fujimoto et al., 2018) proposed an algorithm to 

filter event IDs to detect Golden ticket or 

privilege escalation attacks. While (Siadati & 

Memon, 2017) uses a pattern mining algorithm 

to detect malicious logins or lateral movement 

attacks, and (Siadati et al., 2016) created a 

graphic user interface that illustrates pattern 

behavior to detect malicious logins using visual 

correlation and login events. It should be noted 

that future recommendations of these works 

may use a machine learning-based algorithm as 

recommended by authors. 

Related works that do not use detection 

methods but manually configure the 

environment to enforce protection in the 

Windows environment are, (Nair & Sridaran, 

2019), which implements best practice account 

and password creation to mitigate attacks such 
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as Dictionary, Brute force, Rainbow Table, 

Phishing, Social Engineering, Malware, Offline 

Cracking, Shoulder Surfing, Spidering and 

Guessing attacks. (Sindiren & Ciylan, 2019) 

created an application model Privileged 

Account Access Control System to mitigate 

Dictionary, Brute force, Rainbow Table, Pass-

the-Hash, Man in the Middle, and Sniffing 

attacks. While (Jillepalli et al., 2018) used 

Group Policy Object (GPO) and Active 

Directory Services to harden browser-related 

attacks such as JavaScript and Plugin-based and 

Phishing attacks. (Binduf et al., 2018) on the 

other hand, it applies the principle of least 

privilege to mitigate privilege escalation 

attacks, and (Wang & Gong, 2016) implements 

a centralized single sign-on (SSO) to protect 

application credentials. Aside from these 

manual configurations to harden the Windows 

environment, a different work by (Freitas et al., 

2020) does not detect or mitigate Windows-

related attacks but a framework to identify 

clients 2machines at-risk to lateral movement 

attacks.  

The available related works on defending and 

securing the Windows environment from 

attacks are still a mix of static or manual 

configuration. At the same time, it is still low 

compared to full-blown machine learning-based 

algorithm detection methods. This literature 

review shows that many security researchers 

still consider machine learning-based detection 

to produce unreliable results because a robust or 

static configuration yields a 100% result in 

known or signature-based attacks. However, 

advantages show that machine learning-based 

detection methods can detect unknown or zero-

day attacks. 

Table 2 Studies Using Machine Learning Algorithm for Detection 

Study Detection Algorithm False 

Positive 

Rate (%) 

Recall 

(%) 

Precision 

(%) 

Accuracy (%) 

(Mikhail et al., 2020) 

Sensitivity Plot to Detect New 

Service Creation  

Random Forest 1.5 - - Able to 

detect 

(Binary 

Validation) 

(Voris et al., 2019) 

Masqueraders Detection 

Accuracy 

Gaussian Mixture 

Model 

1 - - 68 

(Matsuda et al., 2018) Results 

for each Algorithm  

One-Class SVM - 100 100 100 

LOF - 5 7 74 

Isolation Forest - 43 90 50 

(Hsieh et al., 2015) 

Performance Evaluation  

Trendmicro and 

Markov Model 

- 66.60 99.07 66.34 

 

Lacking in the Approaches 

The aforementioned related literature lacks the 

capabilities to detect unknown or zero-day 

attacks that this proposal intends to overcome.  

The studies of (Binduf et al., 2018; Freitas et 

al., 2020; Jillepalli et al., 2018; Nair & 

Sridaran, 2019; Sindiren & Ciylan, 2019; Wang 

& Gong, 2016) perform manual configuration 

to mitigate or block specific attacks would not 

be able to block unknown or zero-day attacks. 

On the other hand, related works in protecting 

the Windows environment that uses algorithms 

but does not use machine learning-based 

algorithms have identical capabilities in 

blocking Windows attacks. The only significant 

advantage of this is its automation compared to 

the studies listed above. These studies are as 

follows: (Kotlaba et al., 2020), which uses 

Splunk Processing Language, only detects 

attacks that are programmed to it for querying 

or filtering, (Fujimoto et al., 2018) proposed to 

utilized machine learning in future research to 

reduce false positive detection, (Siadati & 

Memon, 2017) use pattern mining with low 

accuracy results, and (Siadati et al., 2016) 

which uses a graphic user interface proposed 

exploring algorithm designs for future research. 
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On the other hand, related literature that is 

working on detection methods using machine 

learning, such as the work of (Mikhail et al., 

2020), heavily relies on the logs produced by 

Sysmon, which is fed to a central logging 

aggregator or Security Incident and Event 

Manager (SIEM) for its input parameters. This 

method creates latency in producing results as 

the Sysmon installed in the host or client needs 

to be fed to the SIEM. On the other hand, the 

study of (Voris et al., 2019) uses file details in 

its input parameters. This input parameter or 

feature is not enough to determine whether a 

file is malicious or benign. The study of (Voris 

et al., 2019) yields an accuracy of 54% with a 

False Positive Rate (FPR) of 0.2%. (Matsuda et 

al., 2018) evaluated three machine learning 

algorithms, which is a good start. However, the 

input parameters are specific event ID logs, 

which are far too simple for input parameters 

for a machine learning-based algorithm. This 

method does not work for unrecognizable 

attacks with event IDs alone and to be used as 

an input feature to train the machine learning-

based algorithm. The study in (Hsieh et al., 

2015) utilized Active Directory logs as its input 

parameters, which were admitted in their 

conclusions to be insufficient to detect 

malicious behaviors or Windows attacks. 

In addition to the lacking approaches, none of 

the related works deeply tackled how the 

attacks were performed to generate logs 

gathered with the corresponding attacks. Some 

enumerated the malicious binaries and 

executables they have used in their study, but 

none explained how it was used, executed, or 

weaponized. Some related works only gathered 

samples or pre-generated data, without even 

discussing how an attack from an attacker's 

point-of-view is executed. As a result, most of 

the studies used Windows event viewer logs as 

their input features and parameters. 

Summary 

Related studies are divided into protecting the 

Windows environment from manual 

configuration, non-machine learning-based 

algorithms, and machine learning-based 

algorithms. Currently, security researchers still 

opt for manual configuration and non-machine 

learning-based algorithms as these approaches 

give 100% reliability in detecting known and 

signature-based attacks. It is still experimental 

for machine learning-based algorithms. Most 

companies or organizations using machine 

learning-based detection methods are running it 

on top of the traditional or signature-based 

detection methods. The data obtained from 

these studies primarily differ as the authors 

evaluated different scenarios and used different 

input parameters. However, most of the studies 

used the Windows event viewer logs as their 

input parameters. No specific machine learning-

based algorithm was proposed except for 

(Matsuda et al., 2018) Support Machine Vector. 

The challenge is still finding the optimum input 

feature parameters that can yield high accuracy 

and low false-positive rate. 

 

III. WINDOWS COMMON ATTACK 

TECHNIQUES 

Client-side Attacks 

Client-side attacks are the stepping stones or 

initial access attacks to compromise the whole 

network or system fully. These attacks are 

commonly performed using the Web browser or 

HTTP/S (Hypertext Transfer Protocol or 

Hypertext Transfer Protocol Secure) and E-

mail. Thus the Victim's machine must be 

connected to the Internet. The Web attack 

occurs when an unaware user browses 

malicious sites and tries to download a 

malicious file. This malicious file contains a 

malicious code that triggers a backdoor. This 

backdoor is a path or a connection from the 

Victim's machine to the Attacker's machine. 

The exact mechanism applies to the E-mail 

attack. An E-mail either contains a malicious 

URL link that deceives the recipient to click 

and browse the URL link, or the E-mail 

contains a malicious attachment that triggers the 

malicious code when downloaded and executed. 

Fig. 4 shows a high overview of how the 

adversary or cybercriminal gains initial access 

to the Victim's machine using this client-side 

attack. According to (Malicious Attachments 

Remain a Cybercriminal Threat Vector 
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Favorite, 2020), malicious attachments are the 

oldest trick in spreading malware. However, it 

is still one of the top threat vectors in the 

cybercriminal world. 

Figure 4.  Client-side Attack High Overview 

The list of available Initial Access or Client-

side attacks that weaponizes malicious binaries 

and executables are as follows: 

• Hypertext Markup Language (HTML) 

Application – Victim Windows machine needs 

to browse the malicious Unifrom Resource 

Locator (URL). 

• Microsoft Office Macro – Victim 

Windows machine needs to open up the 

malicious Word document. 

• Object Linking and Embedding – 

Victim Windows machine needs to open up the 

malicious Word document and execute the 

embedded object. 

• Malicious Code – Victim Windows 

machine needs to execute the malicious 

executable. 

• Remote Process Memory Injection - 

Victim Windows machine needs to execute the 

malicious Powershell script. 

• Shellcode Injection – Victim Windows 

machine needs to execute the malicious 

executable process by shellcode injection tool 

or Shellter (Shellter | Shellter, 2020). 

Privilege Escalation Attacks 

After the adversary or cybercriminal gains 

initial access, the next step is to perform a 

Privilege Escalation attack if the user privilege 

initially gained has insufficient privilege. 

Privilege Escalation enables the adversaries or 

cybercriminals to gain higher privileges that 

would allow them to explore the network 

further or gain access to sensitive files and data, 

including credentials. Samples of high privilege 

accounts are local administrators (Local 

admins), SYSTEM users, and Domain admins. 

According to (Fujimoto et al., 2018; Matsuda et 

al., 2018), domain admin privilege can be used 

to obtain long-term administrator privilege or 

access any machines that are part of the 

domain. This access falls under Lateral 

Movement attacks. 

On the other hand, Local Administrators can be 

elevated further to System Users who are 

allowed to dump user credentials or password 

hashes coming from the Security Account 

Manager (SAM) database and capture Kerberos 

tickets at the same time. SAM database contains 

password hashes, either in LAN Manager (LM) 

or New Technology LAN Manager (NTLM) 

hash format. The most well-known binary that 

is being used in this credential dumping attack 

is Mimikatz. 

The list of available Privilege Escalation attacks 

that weaponize malicious binaries and 

executables are as follows: 

• Enumerate Readable and Writable Files 

and Directories – The AccessChk binary from 

(markruss, 2020a) is used to identify world-

writable files or directories overwritten by 

malicious binaries or reverse shell to elevate 

privileges. 

• Enumerate Device Drivers and Kernel 

Modules - The Driverquery binary from (eross-

msft, 2020a) is used to list driver versions and 

verify if an exploit is available for the listed 

driver versions. 

• Automated Enumeration – The 

Windows-privesc-check binary from 

(pentestmonkey, 2015/2020) is used to 

automatically enumerate the information and 

vulnerabilities of the system that can be used 

for privilege escalation. 

• Additional Binaries (Sigcheck, Icalcs, 

Juicy Potato, and Mimikatz) - The Sigcheck 

binary from (markruss, 2020c) is used to verify 
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the integrity level and permission to run a 

process. The Icacls binary from (eross-msft, 

2020b) is used to enumerate associated 

permissions. The Juicy Potato binary from 

(Juicy Potato (Abusing the Golden Privileges), 

2020) is used to exploit SeImpersonate 

privilege from Windows service accounts to 

system privilege. The Mimikatz binary from 

(dimi, 2020) elevates security tokens from 

administrator to system privilege. These four 

binaries are commonly abused for privilege 

escalation attacks. 

Lateral Movement Attacks 

Lateral Movement attacks are performed to gain 

high-valued targets or to explore the network 

entirely. By leveraging the Privilege Escalation 

attack or obtaining domain admin credentials, 

Kerberos tickets, or password hashes, this can 

be used to access other machines or servers 

within the network. The attacks that are 

commonly performed under Lateral Movement 

attack are: 

• Pass the Hash – by using the stolen 

hash, the attacker can authenticate to a remote 

machine. This only works with NTLM 

authentication. The pth-winexe binary from 

(byt3bl33d3r, 2015/2020, p. 3) is used to 

authenticate using a password hash dump 

remotely. 

• Overpass the Hash – Using the stolen 

NTLM hash, the attacker can gain a Kerberos 

Ticket Granting Ticket, allowing the attacker to 

authenticate to a remote machine. The PsExec 

binary from (markruss, 2020b) is used to obtain 

remote code execution using generated 

Kerberos tickets and impersonate a domain 

user. 

• Pass the Ticket – This attack leverages 

Kerberos Ticket Granting Service, which offers 

more flexibility than Kerberos Ticket Granting 

Ticket since it can be used to a specific service 

and not only in a specific machine. This attack 

leverages the Mimikatz binary mentioned above 

to craft a silver ticket for remote code 

execution. 

• Golden Ticket – This attack aims to 

create a custom-made Kerberos  Ticket 

Granting Ticket by obtaining the KRBTGT 

password hash. This attack covers PsExec and 

Mimikatz binaries' combination usage.  

IV. MACHINE LEARNING-BASED 

DETECTORS 

Logistic Regression 

Logistic Regression machine learning-based 

detector is implemented to identify malicious 

and benign samples. The Logistic Regression 

model creates a boundary to identify whether 

the sample is malicious or benign. The negative 

log-likelihood depicts the loss function of 

Logistic Regression is 

ℓ({𝑝𝑖}, {𝑦𝑖}) = ∑ ((1 − 𝑦𝑖) log(1 −𝑖

𝑝𝑖) + 𝑦𝑖 log 𝑝𝑖    

(1) 

where {𝑝𝑖} stands for probability predictions 

and {𝑦𝑖} stands for truth labels. The likelihood 

of all predictions is shown below as the product 

of each likelihood: 

ℒ({𝑝𝑖}, {𝑦𝑖}) =  ∏ 1 − 𝑝𝑖𝑦𝑖=0 . ∏ 𝑝𝑖𝑦𝑖=1       (2)                             

Logistic Regression aims to search for the best 

parameters that produce the probabilities that 

optimize or maximize the likelihood. Logistic 

Regression identifies the binaries or executables 

using a hyperplane. The hyperplane depends on 

the number of fed or configured features to the 

logistic regression algorithm, which 

geometrically separates malicious from benign 

samples. When a sample or an unseen binary or 

executable is fed into the detector, Logistic 

Regression classifies the sample on the 

malicious or benign side of the boundary. 

Sklearn.Linear_model.LogisticRegression is 

used in constructing Logistic Regression 

machine learning detector 

(Sklearn.Linear_model.LogisticRegression — 

Scikit-Learn 0.23.2 Documentation, 2020). 

Random Forest 

Random Forest machine learning-based 

detector is implemented to identify malicious 

and benign samples. The Random Forest model 

heavily relies on decision trees, and each 

decision tree votes to identify whether the 

sample is malicious or benign. The Random 

Forest algorithm workflow is as follows: 
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1. A random subset of N samples 

(trained individual trees) from the 

training dataset is chosen. 

2. Random X features are chosen 

from the available Y features on each 

split point, and the optimal split point is 

chosen among these X features, where X 

≤ Y. 

3. Do step 2 until each tree is 

trained. 

4. Do steps 1, 2, and 3 until all 

trees in the forest are trained. 

The probability that a binary or executable is 

identified, whether malicious or benign, 

depends on the number of decision tree votes 

divided by the total number of decision trees. 

Sklearn.Ensemble.RandomForestCLassifier is 

used in constructing the Random Forest 

machine learning detector (3.2.4.3.1. 

Sklearn.Ensemble.RandomForestClassifier — 

Scikit-Learn 0.23.2 Documentation, 2020). 

Support Vector Machines 

Support Vector Machine (SVM) learning-based 

detector is implemented to identify malicious 

and benign samples. SVM creates a hyperplane 

like logistic Regression, and the difference 

between the two is the loss function. SVM 

implements hinge loss which penalizes samples 

that are on the wrong side only. In contrast, 

logistic Regression implements a log-likelihood 

function that penalizes all samples 

proportionally to the probability error estimate. 

The loss function of the support vector machine 

is shown 

𝛃 +  𝑪 ∑ 𝝃𝒊
𝑵
𝒊 = 𝟏                         (3)       

where the margin is 𝛃, the hyperparameter that 

is relative to the contribution of the two terms is 

𝑪, and the distance of the margin to the 𝒊th 

support vector is 𝝃𝒊. Sklearn.Svm.SVC is used 

in constructing the Support Vector Machine 

detector (Sklearn.Svm.SVC — Scikit-Learn 

0.24.2 Documentation, 2021). 

Neural Network 

Another algorithm is the Neural Networks (NN) 

or Artificial Neural Network (ANN), as shown 

in Fig. 5. It is a profound interconnection of a 

primary computational factor known as a 

perceptron, which are fundamental models of 

neurons in the human brain. Its architecture and 

calculation are utterly parallel networks of 

distinct computational elements systematized in 

correlation to each other. The learning process 

in this kind of algorithm is apparent in a 

manner. It can also produce accurate and 

reliable expected results or outputs. 

 
Figure 5. The Architecture of the Neural 

Network 

The input layer on the left side consists of a set 

of new neurons 𝒙𝒊 which represent the input  

 

{𝒙𝒊|𝒙𝟏, 𝒙𝟐, 𝒙𝟑, . . . , 𝒙𝒏}.                  (4)       

 

The middle, which is the hidden layer, 

transforms previous layers' values using linear 

weights 𝑤𝑖 summation  

        

{𝒘𝒊𝒙𝒊 + 𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐

+ 𝒘𝟑𝒙𝟑+. . . +𝒘𝒏𝒙𝒏} 

(5)       

 

and nonlinear activation function such as 

rectified linear unit 𝑹(𝒛) (ReLU) with 𝒛 as 

input is applied.       

 

𝑹(𝒛) = max(𝟎, 𝒛) (6)       

                

To optimize the parameters with 

backpropagation, this activation function or 

ReLU applies a nonlinear transformation to the 

weighted sum, resulting in the neuron's input 

data linear transformation. After that, the last 

layer or the right side, the output layer, retrieves 

the values from the last hidden layer, 

transforming and outputs them. 

Sklearn.Neural_network.MLPClassifier is used 

in constructing Neural Network detector (1.17. 

Neural Network Models (Supervised) — Scikit-

Learn 0.24.2 Documentation, 2021). 

 

V. RESULTS AND DISCUSSION 
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The previous section provided an overview of 

the three common Windows attack techniques 

and introduced the binaries and executables 

used in the attacks. Section Machine Learning-

based Detectors discussed the machine learning 

algorithms that were used in constructing the 

detector. Scikit-Learn library for hashing input 

features such as FeatureHasher and creating a 

machine learning-based detector using Logistic 

Regression, Random Forest, Support Vector 

Machine, and Neural Network covered in Sec. 

Machine Learning-based Detectors. These tools 

and libraries have been used to complete this 

study. In addition to the machine-based detector 

results, samples from the attacks were also 

evaluated using VirusTotal (VirusTotal, 2020) 

for third-party anti-malware engine comparison. 

Training and Testing 

Table 3 shows the sample dataset that has been 

gathered from VirusTotal and Windows Server 

2016 system32 folder. Additional samples for 

testing and used in sample attacks have been 

created in Kali Linux Operating System using 

MSFVenom (MSFvenom | Offensive Security, 

2020). The sample dataset indicates the 

category, type, platform, alias, quantity, or the 

number of samples. This dataset is the sample 

used for training and testing the machine 

learning-based detector. 

Table 3 Sample Dataset 

Category Type Platform Alias Quantity  Alias Quantity Alias Quantity 

Malware Backdoor Win32 No-Alias 35 Delf 8 IRCBot 8 

Asper 1 Donbot 1 Koutodoor 1 

Banito 1 DsBot 19 LolBot 3 

Beastdoor 1 Dusta 1 MeSub 1 

Bifrose 106 FirstInj 5 Netbus 1 

BlackHole 54 Floder 1 Nucleroot 1 

Bredolab 26 FlyAgent 1 Papras 10 

Ciadoor 2 Gbot 32 PcClient 2 

Cinkel 1 Gnutler 1 Poison 31 

Clemag 7 Httpbot 1 Portless 1 

Curioso 1 Hupigon 50 Prorat 10 

DDOS 1 Inject 2  

For Testing Customize Win32 - 14  

Benign DLL Win32 - 405 

Benign Executable Win32 - 96 

The first step in this training and testing process 

is to extract the string features of the samples. 

However, the output of string feature extraction 

produces too many features that a machine 

learning algorithm could handle and causes 

memory issues. For example, if sample one 

contains the string "malicious sample" and the 

second sample contains a string "malicious 

sample!" this is treated as two separate features. 

This example means that it quickly encounters 

too many unique strings that end up being used 

for training the detector. Secondly, suppose that 

the output has around one thousand features, 

and the samples available are also around one 

thousand. In this case, the samples would not be 

enough to train the machine learning-based 

detector of what each of the features describes a 

given binary or simply known as the curse of 

dimensionality. 

A hashing trick has been implemented—feature 

hashing from scikit-learn (6.2. Feature 

Extraction — Scikit-Learn 0.23.2 

Documentation, 2020), also known as 

FeatureHasher, has been applied to overcome 

the problem of having too many features. By 

applying FeatureHasher, the extracted features 

are encoded in a vectorized form instead of 

building a hash table. A limit is also assigned 

for the length of the feature matrix. 

After extracting and hashing the input features 

from binaries and executables, it can now train 

the machine learning-based detector. After the 

training has been performed, the detector can 

detect new binaries and executables to classify 
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whether it is benign or malicious. Several 

detector algorithms were implemented and 

evaluated. The machine learning-based 

detectors evaluated are Logistic Regression, 

Random Forest, Support Vector Machine, and 

Neural Network. Due to the related studies of 

(Mikhail et al., 2020) and (Voris et al., 2019), 

not mentioning what type of machine learning 

they have implemented, Support Vector 

Machines has been chosen because of (Matsuda 

et al., 2018) study in Support Vector Machines 

which yielded a high accuracy result and uses 

regression analysis and binary linear classifier. 

In addition to this, Logistic Regression machine 

learning has also been evaluated because it is 

also under a linear classifier and one of the 

basic ones. 

On the other hand, Random Forest machine 

learning has higher complexity. It is under the 

same supervised learning model as the Logistic 

Regression machine learning has been covered 

and evaluated because of its nature from the 

Binary or Decision Tree machine learning 

algorithm used to solve detection problems. 

Neural Network, a prerequisite for more 

complex algorithms such as Deep and 

Reinforcement Learning, is evaluated. 

Unsupervised learning is not covered, as there 

is no way to train the detector for false positives 

and false negatives for immediate results, 

making it less effective in detecting malicious 

or benign binaries and executables. Python 

programming language has been used in 

creating these detectors as scikit library is using 

Python language. 

Machine Learning Results without Sample 

Training 

Figure 6 was tested without adding the samples 

for testing in training samples. The result shown 

in Fig. 6 shows that around half of the samples 

for testing are indistinguishable without adding 

the sample for testing in training the machine 

learning-based detectors. Relevant accuracy 

value in results or removing outliers shows that 

Support Vector Machine has detection accuracy 

at 93.23%, followed by Random Forest at 

75.25%. While without removing the outliers 

and including all the testing results, Support 

Vector Machine has detection accuracy at 

53.35%, followed by Random Forest at 50.36%. 

This result shows that the Support Vector 

Machine followed by Random Forest has the 

top results in determining whether a binary or 

executable is malicious or benign. 

Machine Learning Results with Sample 

Training 

Figure 7 was tested by adding the samples for 

testing in training samples. The result shown in 

Fig. 7 shows that the detection or classification 

of malicious samples significantly improved 

when the testing samples are added in training 

the machine learning-based detectors. However, 

the Support Vector Machine's performance 

stays the same while the three detectors 

significantly improve their accuracy. The 

sample results are the same as above upon the 

removal of outliers. It shows that Artificial 

Neural Network has detection accuracy at 

99.98%, followed by Logistic Regression at 

99.71%. While without removing the outliers 

and including all the testing results, Logistic 

Regression has detection accuracy at 94.42%, 

followed by Artificial Neural Network at 

93.15%. On this result, Logistic Regression and 

Artificial Neural Network take the lead in the 

accuracy of classifying or detecting malicious 

samples. 

Machine Learning Processing Time 

Figure 8 shows each machine learning-based 

detector's processing or execution time on 

classifying or identifying the testing samples, 

whether it is malicious or benign. The result 

shown in Fig. 8 shows that the processing time 

of the Support Vector Machine is high at 1809 

milliseconds without adding testing samples in 

training samples and 1841 milliseconds with 

adding testing samples in training samples, 

followed by Artificial Neural Network at 979 

milliseconds without adding testing samples in 

training samples and 966 milliseconds with 

adding testing samples in training samples. The 

least or best processing time for the machine 

learning algorithms is the Logistic Regression 

at 24 milliseconds without adding testing 

samples in training samples and 24 milliseconds 

as well with adding testing samples in training 
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samples, followed by Random forest at 49 

milliseconds without adding testing samples in 

training samples and 51 milliseconds with 

adding testing samples in training samples. 

Logistic Regression outperforms Random 

Forest in processing or execution time by 25 to 

27 milliseconds with a difference in results. 

Summarized Comparative Results 

Figure 9 shows the empirical cumulative 

distribution results of Fig. 6 and Fig. 7. The 

result shown in Fig. 9 shows that both Logistic 

Regression and Artificial Neural Network have 

better results with an average accuracy of 

94.42% and 93.15%, respectively, when a 

testing sample is added in training. Otherwise, 

when a testing sample is not added in training, 

Support Vector Machine followed by Random 

Forest shows better results with an average 

accuracy of 53.35% and 50.36%, respectively. 

A third-party scanning engine or VirusTotal 

result was added in Fig. 9, and the data of 

VirusTotal is an aggregation of different anti-

malware vendors or scanning engines, where 

the accuracy 𝑉T  results are equal to the total 

anti-malware engines that can classify the 

malicious sample correctly 𝐷T divided by the 

total number of anti-malware engines 𝐸T that 

was processed when the sample for testing was 

submitted in VirusTotal, as shown in (7). 

 

𝑽T =
𝑫T

𝑬T
⁄  (7)       

                                 

VirusTotal results in more than 50% of anti-

malware engines cannot classify the malicious 

samples correctly, with a 39.02% overall 

accuracy results of all combined third-party 

scanning engines in identifying all testing 

samples used in machine learning-based 

detectors.  

 

VI. CONCLUSION 

Fig. 9 shows that the created machine learning-

based detector performs better in identifying or 

classifying the malicious samples than current 

anti-malware products. The learning-based 

detector performs better in identifying or 

classifying the malicious. Among the list of 

machine learning-based detectors evaluated, 

with testing samples included in the training, 

Logistic Regression performed better in 

accuracy and processing time than other 

machine learning-based detectors. However, if 

testing samples are not included in the training, 

the Support Vector Machine came on top. 

 
Figure 6. Machine Learning Accuracy Results (Without Sample Training) 
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Figure 7. Machine Learning Accuracy Results (With Sample Training) 

 

 
Figure 8. Machine Learning Processing Time Results 
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Figure 9. Empirical Cumulative Distribution of Results 

 

Implementing this machine learning-based 

detector makes it possible to detect the malware 

used in zero-day attacks or attacks explicitly 

improvised for such an organization or 

company without relying on a third-party 

vendor or product. In addition, Organizations or 

companies do not need to wait for vendors or 

third-party malware detectors to release 

signatures or indicators to remediate this 

malware used in the attacks. Having the 

capability to block such attacks results in fewer 

organizations and companies being 

compromised and exploited by Cybercriminals. 

For future studies, it is recommended to 

evaluate other machine learning algorithms 

such as Nearest Neighbors and Semi-supervised 

learning. In addition to string as an input 

feature, it would also be for future research to 

add or combine other input features such as 

portable executable headers, assembly 

instructions, import address translation, and N-

grams with string.  The aim would be to classify 

or detect benign or malicious samples more 

accurately with the shortest processing or 

execution time, equating to fewer resources 

consumed, such as memory and process. 
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