
Journal of Positive School Psychology                                                                                                                                http://journalppw.com 

2022, Vol. 6, No. 3, 8434–8441 

 

© 2022 JPPW. All rights reserved 

 

Comparing the efficiency of Pathfinding Algorithms for NPCs in 

platform games 
 

Umar Affandi Shahrin Iskandar1, Norizan Mat Diah2*, Marina Ismail13, Azizi Abdullah4 

 

1,2,3Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 

Shah Alam, Selangor, Malaysia 
4Faculty of Information Science and Technology, The National University of Malaysia, 43600 

Bangi, Malaysia 

Email: 1english1119@gmail.com, 2norizan@fskm.uitm.edu.my, 3marina@fskm.uitm.edu.my, 
4azizia@ukm.edu.my 

 

Abstract 

Pathfinding has been a significant video game research area for decades. It is usually utilised as the 

core of any Artificial Intelligence moves in computer games. This research aims to identify a better 

suited and more efficient pathfinding algorithm for the platformer video game genre. This study 

compared two algorithms: the A* and Dijkstra algorithms. Both algorithms were implemented in a 

platform game environment and tested with several different obstacles for non-player characters 

(NPCs). The parameters measured were processing time, the length of the path taken, and the number 

of blocks/nodes played in the computational process. To evaluate the algorithms’ performance, the 

travel time taken, the computed nodes, and the distance travelled by the NPC to reach its destination 

were analysed for each algorithm. The findings indicate that both algorithms are suitable for specific 

conditions in a platformer environment; Dijkstra’s performed accurately and managed to find the 

shortest path when the route to the objective required less vertical movement, while A* performed 

more efficiently when the NPC was required to reach an objective that required more vertical 

movement. The results also suggest that A* performed better than Dijkstra’s algorithm, as it has a 

heuristics function that increased its flexibility. 

Key-words: A*, Dijkstra, Non-Player Character (NPC), Pathfinding, platform game. 

 

I. INTRODUCTION 

Computer games, or more commonly referred 

to as video games, have constantly been 

evolving ever since their emergence in the 

1950s, as observed by Chikani (2015). In recent 

years, these games have been expanding rapidly 

to become the multi-billion-dollar industry that 

it is today, while encompassing more than just 

entertainment for kids. The gaming industry is 

now also a medium used to tell complete and 

engaging stories, with exceptional graphics that 

takes players into fantasy worlds where almost 

anything can happen. Besides, with the advent 

of e-sports and online streaming, gaming has 

also become a viable career option for those 

intending to take their hobbies and skills 

further. Perez et al. (2019) stated that Artificial 

Intelligence or AI is an essential component of 

a video game. The AI defines how a computer 

opponent behaves in a video game, where their 

behaviours could range from simple patterns 

that repeatedly loop in to even beating a 

championship-holding player. Of the essential 

aspects of video game AI is pathfinding. 

Pathfinding has been a significant research area 

in video games for decades. Many programmers 

have attempted to find the best way to represent 

realistic movements for their creations. Such 

research has led to the creation of many 

different pathfinding algorithms just for video 

games in general. Depending on the genre and 



8435                                                                                                                                                      Journal of Positive School Psychology 

© 2022 JPPW. All rights reserved 

type of video game that has been developed, 

certain pathfinding algorithms may serve 

certain games better than others. The 

appropriate selection of algorithms that can best 

serve as the building block of a specific genre 

or type of video game is also essential so as not 

to waste development resources needlessly. 

However, despite existing research within the 

field of pathfinding (Ostrowski, 2015), there 

seems to be barely any study on the efficiency 

of specific pathfinding algorithms in a specific 

video game genre. 

Non-player characters (NPCs), which may 

include animals, monsters, humans, or vehicles, 

are all required to move in a goal-oriented 

manner, and as such, the programming must be 

able to identify a good path for the NPCs to 

reach their goal from their origin. These 

movements must be identified while 

simultaneously avoiding obstacles and using the 

most efficient path there is. Therefore, it is 

essential to build and apply the most 

appropriate pathfinding algorithm to serve 

different types of video games according to 

what the developer needs. One of the video 

games that has made extensive use of AI is the 

platformer video game. 

 

II. BACKGROUND OF STUDY 

Computer games and AI have long been 

associated with each other. Even before the 

computer sciences acknowledged AI as a valid 

field of study, early researchers of computer 

sciences had written programs that could play 

games to determine whether computers could 

handle and solve tasks that generally would 

require intelligence. Most early research on 

game-playing AI was focused on classic board 

games, such as Checkers and Chess, as stated 

by (Yannakakis & Togelius, 2018). Yannakakis 

and Togelius  (2018) also observed that in the 

last two decades, a research community has 

emerged around applying AI to games other 

than board games, in particular computer 

games. In this case, AI is used in most 

computer games to induce difficulty and 

challenges depending on the type and genre of 

the game or when it is impossible to provide 

another human opponent for the player. 

AI research involves areas of Machine 

Learning, high-level decision-making based on 

random inputs, and eventually, accurate 

intelligence equal to those of a human, as 

detailed in a survey by Müller et al. (2016). 

Game AI often only consists of some if-then 

conditions or heuristics that are just enough to 

give a player a good challenge or experience 

during gameplay. One of the more prominent 

uses of AI in video games is for pathfinding or 

NPCs or objects in video games. 

Pathfinding is one of the essential aspects of 

computer game development. According to 

Krishnaswamy et al. (2009), one of the crucial 

elements of game AI is pathfinding, i.e., 

enabling an agent to calculate a path from a 

starting point to a target around any number of 

obstacles. Developers must choose the correct 

algorithm as the groundwork for starting a 

project. 

Over the years of computer game development, 

agent movement has been singled out as one of 

the biggest challenges in designing realistic AI 

in computer games. Designing AI for many 

games is about the movement of agents or bots, 

also known as non-playable characters (NPC), 

around a virtual world. Designing and 

developing a complex system for decision-

making is worthless if an NPC cannot 

overcome a set of obstacles by implementing 

those decisions.  

The most common issue of pathfinding in a 

video game is to cleverly avoid obstacles and 

seek out the most efficient path over different 

terrain (Cui & Shi, 2011). This means that the 

criteria to choose the most suitable algorithms 

include that it can lead the NPC on the shortest 

path with the least computing time. The shortest 

path can mean how fast the NPC navigates 

through the nodes and how many moves it 

needs to make to get the shortest path.  

Krishnaswamy et al. (2009) compared the 

efficiency of Pathfinding Algorithms in Game 

Development. The study conducted a test 

between Djisktra A* and D* in a top-down 

simulated environment, with an agent trying to 



Umar Affandi Shahrin Iskandar1, et. al.     8436  

© 2022 JPPW. All rights reserved 

find a designated goal. In their experiments, 

they used factors such as node visitations, 

average nodes in a path, the average length of a 

path, average path execution time, and finally, 

average path execution time in main application 

loops to determine the efficiency of the three 

algorithms. Another similar research was done 

by Permana et al. (2018), who researched the 

comparative Analysis of Pathfinding 

Algorithms A *, Dijkstra, and BFS, in a Maze 

Runner Game. The study compared the 

efficiency of the algorithms in a 2-D top-down 

maze runner game. In their experiments, they 

ran three different algorithms: A*, Dijkstra, and 

Breadth-First Search, considering the computed 

blocks, the time taken to reach the goal, and the 

distance travelled by each algorithm. 

The next study was Barnouti’s (2016) 

Pathfinding in Strategy Games and Maze 

Solving using the A* Search Algorithm. The 

study discussed the implementation of the A* 

algorithm in a strategy game and briefly 

compared it to other algorithms like Depth-First 

Search, Breadth-First Search, and Best First 

Search algorithms. 

Sazaki et al. (2017) used a pathfinding 

algorithm for an NPC to race against the player 

in a car racing game. The pathfinding method 

used by the NPCs in this game was the A* 

algorithm, used to find the shortest path on the 

track, and combined with the Dynamic 

Pathfinding Algorithm to avoid static or 

dynamic obstacles in its path. The study showed 

that both methods could be implemented in car 

racing games, with the track conditions being 

blocked by static obstacles. While moving on 

the track with dynamic obstacles, the 

combination of both methods passed through 

the course under certain conditions only. 

The final study conducted the Simulation and 

Comparison of Efficiency in Pathfinding 

algorithms in games (Noori et al., 2015). The 

research compared all the existing pathfinding 

algorithms in a maze runner-like simulation 

using a 2-D map. Some of the algorithms used 

in the research included A*, Breadth-first 

Search, Depth-First Search, and Dijkstra’s 

algorithm. 

The current research project compares A * and 

Dijkstra pathfinding algorithms to determine 

their efficiency as a groundwork algorithm for a 

platformer game. Although previous research 

has compared the algorithms’ efficiency, none 

has focused on this computer game genre. The 

study will employ the same basic efficiency 

tests as per previous research to measure the 

algorithms tested, with the variables being the 

processing time, the length of the path taken, 

and the number of blocks/nodes played in the 

computational process. 

 

III.  IMPLEMENTATION OF THE 

PATHFINDING ALGORITHMS 

The research requires creating a 2-D platformer 

game prototype to prepare a suitable 

environment to test both algorithms. Both 

Dijkstra and A* algorithm will be developed 

and implemented to suit the designed 

platformer game. Both algorithms will be 

executed on the created simulations or levels to 

test and record the results for both algorithms. 

After both algorithms have been implemented 

in the developed platformer game, testing and 

simulation will be done to compare the results. 

Based on previous research in the related field, 

that the best way to evaluate the efficiency of 

the algorithms is to analyse the algorithm’s 

process time, length of path taken, and the 

number of blocks/nodes that are played in the 

computational process after simulation and 

testing (Bintoro et al., 2018).  

The algorithms need to be modified to work 

with a platformer-type videogame by 

implementing the gravitational restrictions 

associated with platformer games. Then, the 

algorithm is used to create an NPC that attempts 

to reach a destination most efficiently as 

determined by the respective algorithms. 

Branicki (2015) stated that it is essential to 

decide on the paths that can be taken by the bot 

or NPC and what form the paths themselves 

will be when adapting the algorithms. In a 

platformer, the ability to jump is a key part of 

the game and will need to be considered. The 

rule definitions of the NPC or the character 

movement must also be precise. For example, 



8437                                                                                                                                                      Journal of Positive School Psychology 

© 2022 JPPW. All rights reserved 

an NPC can jump at a height of 3 cells. Its 

movement during a jump should be accounted 

for, and once it has reached the maximum 

height, it should still move to the side. Figure 1 

shows an example of a character’s maximum 

movement path that follows the rules defined 

above. 

Figure 1– Character movement path in a 

jumping arc 

 
 

During this movement, each cell that is in the 

NPC's movement path will have to keep track 

of the data on jump height to ensure that the 

character is not going any higher than allowed 

to eventually fall. In this issue, each cell needs 

to be assigned jump values and each cell value 

should be increased by increments of 1 for the 

jump duration. 

As can be seen from Figure 2 below, the cell 

with the number 6 is the highest point during 

the jump, and as the character starts to fall, the 

cells involved during the fall duration continues 

the increments, as the jump is still considered 

ongoing. The value 0 denotes when the 

character is grounded. Referring to Branicki 

(2015), for a standard A* or Dijkstra algorithm, 

nodes that are already visited are usually never 

processed again. However, in a platformer, 

these nodes need to be processed because the 

jump values in the nodes must also be 

considered, instead of just the x- and y-axis 

coordinates. 

Figure 2– Cell values during jumping 

movement 

 
  

Both the A* and Djikstra algorithms were 

implemented in the same way. Note that A* is a 

modification of the Dijkstra’s algorithm that 

uses a heuristic to determine which vertices to 

search and can be changed between both 

algorithms through adding and removing the 

heuristics functions from the algorithms. The 

heuristic is the estimated cost (or distance) from 

the node that is being searched, to the target 

node. The lower the heuristics, the more likely 

one will explore the next node’s edges instead 

of some node that is further away. Hence, 

reaching the target from the source will be 

much faster. 

3.1 Experimentation and Testing 

In the study, both the A* algorithm and 

Djikstra’s algorithm were implemented in the 

prototype platformer game as a testing 

environment for the algorithms’ efficiency. The 

NPC will move to a directed objective, and 

node lines will appear, showing the calculated 

nodes done by the algorithms and the 

movement paths that the NPC will take to reach 

its destination. Krishnaswamy et al. (2009) 

compared the efficiency of both Dijkstra's and 

A* in a top-down simulated environment, 

instead of a platformer, with three different sets 

of environments as the testing ground. 

Both the A * and Djikstra’s algorithms were 

tested with the same obstacles, with three 

variations, and the results for each variation 

were recorded. All the variations were tested 

ten times each with each algorithm to ensure 

that the readings taken were accurate and not 

anomalous. 

3.1.2 Testing Variation 1  

During this variation (Figure 3), it was observed 

that the NPC with the A* algorithm showed a 

total of 24 computed movement nodes 



Umar Affandi Shahrin Iskandar1, et. al.     8438  

© 2022 JPPW. All rights reserved 

compared to Dijkstra’s algorithm, which only 

required 10 nodes in total. The travel time for 

both algorithms was the same, at 10 seconds, 

while the maximum distance travelled by A* 

was a bit longer, at 715, compared to Dijkstra’s 

686, (refer to Table 1). In this instance, the A* 

algorithm opted for a smaller jump arc to 

ascend the obstacles as opposed to Dijkstra, 

where the NPC used a higher jumping arc to 

climb the obstacles. While descending, the NPC 

in A* also moved to an extra node before 

descending further to reach the objective, while 

the NPC with Dijkstra’s algorithm was able to 

calculate a more direct path and required 1 less 

node for itself. 

Figure 3– Movement of NPC during Variation 1 for both algorithms 

  
NPC movement with the A* algorithm NPC movement with Dijkstra’s algorithm 

 

Table 1– Comparison between A* and 

Dijkstra for Variation 1 

Variation 1 A* Dijkstra 

Travel time 11 seconds 10 seconds 

Computed 

Nodes 

24 nodes 14 nodes 

Distance 

travelled (In 

the Y- and X-

axis) 

715 686 

 

3.1.2. Testing Variation 2  

For testing variation 2 (Figure 4), the NPC with 

A* algorithm was more efficient, as it had 

fewer computed nodes-10 nodes as compared to 

the 16 nodes needed by Dijkstra. It also 

required less travel time at 4 seconds, making it 

1 second faster than Dijkstra’s 5 seconds, and it 

had lesser distance travelled due to using fewer 

jumps overall, with 415 distance while Dijkstra 

travelled a total of 475 distance. In Table 2, the 

A* algorithm made higher jumps to ascend the 

obstacles faster, while Djikstra’s algorithm 

required the NPC to make more jumps, causing 

it to be slower and with increased total distance 

travelled due to the Y-axis movement of the 

jumps. 

Figure 4– Movement of the NPC during Variation 2 for both algorithms 

  

NPC movement with the A* algorithm The NPC movement with Dijkstra’s 

algorithm 

 Table 2– Comparison between A* and 

Dijkstra for Variation 2 

Variation 2 A* Dijkstra 

Travel time 4 seconds 5 seconds 

Computed Nodes 10 nodes 16 nodes 

Distance travelled 

(In the Y- and X-

axis) 

415 475 

 



8439                                                                                                                                                      Journal of Positive School Psychology 

© 2022 JPPW. All rights reserved 

3.2.3. Testing Variation 3  

In Variation 3 (Figure 5), NPC with the A* 

algorithm was more efficient, as it had fewer 

computed nodes, with 17 nodes compared to the 

23 nodes needed by Dijkstra. It also required 

less travel time, at 11 seconds, making it 1 

second faster than Dijkstra’s 12 seconds. It also 

had a lesser distance travelled due to it using 

fewer jumps overall with 875 distance while 

Dijkstra travelled a total of 997 distance, as per 

Table 3. It is observed that A* made higher 

jumps to ascend the obstacles faster while 

Djikstra’s required the NPC to make more 

jumps causing it to be slower and with 

increased total distance travelled due to the Y-

axis movement of the jumps. Djikstra’s 

descending of the obstacle was observed to take 

the more grounded route than the A* algorithm 

approach, which took the more direct horizontal 

route available. 

Figure 5– Movement of NPC during Variation 3 for both algorithms 

  
NPC movement with the A* algorithm NPC movement with Dijkstra’s algorithm 

Table 3– Comparison between A* and 

Djikstra for Variation 3 

Test 3 A* Dijkstra 

Travel time 11 seconds 12 seconds 

Computed 

Nodes 

17 nodes 23 nodes 

Distance 

travelled (In 

the Y- and X-

axis) 

875 997 

 

IV. RESULTS AND FINDINGS  

The results of both algorithms show that the A* 

algorithm will perform more efficiently once 

the obstacles that the NPC needs to pass 

through passed a particular height value, as it 

will attempt to use the highest possible jumping 

arc that is available to the NPC to reach the 

destination faster while requiring less computed 

nodes. Meanwhile, Dijkstra’s algorithm was 

more efficient when the height to overcome was 

below a particular value. When this condition is 

fulfilled, it performs better than the A* 

algorithm. However, this result does not seem 

to correlate with previous research, where 

Dijkstra is always meant to find the shortest 

path in any situation. Based on the findings of 

similar studies, a more plausible explanation is 

that when the distance to the objective becomes 

farther and higher, Dijkstra’s algorithm fails to 

consider the jump values in the nodes and 

instead only considers the x- and y-axis 

coordinates due to possible coding issues. The 

A* algorithm manages to avoid this problem 

thanks to its multiple heuristics functions, 

including custom-made ones that can and will 

take the above into account when calculating 

the nodes. As such, it can be said that A* is 

more suitable for a platformer due to its 

flexibility, which is due to the heuristics 

function.  

The result of this study indicates that Dijkstra's 

algorithm is more suitable for closer distance 

and precise jumping movement, as it will more 

efficiently help the NPC to reach a closer 

destination, while the A* algorithm performs 

better when the NPC needs to get to a farther 

location and thus requires less precise jumping 

movements.  

The results should help determine which 

algorithm to use depending on an NPC's travel 

route in a particular platformer environment. 

For example, a programmer may decide to use 

Dijkstra in a more enclosed space, as this means 

the NPC will not have much room to navigate 

and thus will need a more precise movement 



Umar Affandi Shahrin Iskandar1, et. al.     8440  

© 2022 JPPW. All rights reserved 

afforded by Dijkstra's algorithm as opposed to 

A*, which may cause the NPC to get stuck in 

the environment. In summary, both algorithms 

are helpful in a platformer game when the 

conditions for both algorithms to perform 

effectively in the platformer environment are 

met. 

Choosing the most suitable pathfinding 

algorithm for an NPC is important, as such a 

decision will determine the challenge level an 

NPC may impose on the player. A less efficient 

algorithm that cannot track a player character 

effectively will provide less of a challenge and 

reduce the amount of fun when playing a 

platformer game. Meanwhile, the game 

developer may intentionally use a less efficient 

pathfinding algorithm to minimise the difficulty 

for less skilled players to enjoy the game at 

their own skill level. 

 

V. CONCLUSION  

 This study aimed to determine the efficiency of 

A* and Dijkstra as a pathfinding algorithm for a 

platformer game environment, where the NPC 

movement on the Y-axis is restricted. The 

results of the efficiency of both algorithms 

indicate that A* is more suitable for long-

distance movement in a wide area. At the same 

time, Dijkstra performed better in an enclosed 

space with close-distance movements. This 

finding is essential since choosing a suitable 

pathfinding algorithm affects the gameplay, 

whether the NPC imposes more of a challenge 

on a player character or not. Game developers 

may also use this finding to balance the level of 

challenge in a platformer game to provide 

different challenge levels for players with 

different skill levels. 

Since the study only focused on the ability to 

jump and its effect on the movement arc of a 

grounded NPC in the platformer environment, 

the results of this study will only apply to NPCs 

that strictly use ground-based movement and 

not other navigation methods. Hence, further 

studies can still be conducted to identify how 

the algorithm would affect the movement 

efficiency of the NPC when it is given other 

movement types that are also associated with a 

platformer game, such as swimming, climbing, 

or limited fight. It is also recommended that a 

possible modification to the Djikstra algorithm 

be made to account for the jump values in the 

nodes instead of just through the x- and y-axis 

coordinates when the objective is at a farther 

distance. 

BIBLIOGRAPHY 

1. BARNOUTI, N. H., AL-DABBAGH, 

S. S. M., NASER, M. A. S. (2016). 

Pathfinding in Strategy Games and 

Maze Solving Using A* Search 

Algorithm. Journal of Computer and 

Communications, 4, 15-25  

2. BRANICKI, D., (2015), A* 

Pathfinding for 2D Grid-Based 

Platformers, Retrieved from URL: 

<https://gamedevelopment.tutsplus.co

m/tutorials/a-pathfinding-for-2d-grid-

based-platformers-making-a-bot-

follow-the-path--cms-24913> 

Accessed Feb 16, 2021 

3. CHIKHANI, R. (2015). The History of 

Gaming: An Evolving Community | 

TechCrunch. Techcrunch. URL: 

<https://techcrunch.com/2015/10/31/th

e-history-of-gaming-an-evolving-

community/> Accessed May 3, 2021 

4. CUI, X. & SHI, H. (2011). A* - based 

Pathfinding in Modern Computer 

Games, IJCSNS Int. J. Comput. Sci. 

Netw. Secur., 11(1),125-130. 

5. KRISHNASWAMY, N. (2009). 

Comparison of Efficiency in 

Pathfinding Algorithms in Game 

Development. The Honors Program 

Senior Thesis, College of Computing 

and Digital Media DePaul University, 

Chicago, Illinois, United States 

6.  HANDY PERMANA, S. D., YOGHA 

BINTORO, K. B., ARIFITAMA, B. & 

SYAHPUTRA, A. (2018). 

Comparative Analysis of Pathfinding 

Algorithms A *, Dijkstra, and BFS on 

Maze Runner Game. International 

Journal of Information System & 

Technology, 1(2), 1-8. 



8441                                                                                                                                                      Journal of Positive School Psychology 

© 2022 JPPW. All rights reserved 

7. OSTROWSKI, D., POZNIAK-

KOSZALKA, I., KOSZALKA, L., & 

KASPRZAK, A. (2015). Comparative 

Analysis of the Algorithms for 

Pathfinding in GPS Systems, 

Proceedings of The Fourteenth 

International Conference on Networks 

(ICN 2015), pp. 102-108 

8. PEREZ, D., LIU, J., KHALIFA, A. A., 

GAINA, R. D., TOGELIUS, J. & 

LUCAS, S. M. (2019). General Video 

Game AI: A Multitrack Framework 

for Evaluating Agents, Games, and 

Content Generation Algorithms, in 

IEEE Transactions on Games, 

11(3),195-214. 

9. MÜLLER V.C. & BOSTROM N. 

(2016). Future Progress in Artificial 

Intelligence: A Survey of Expert 

Opinion. In: Müller V. (eds) 

Fundamental Issues of Artificial 

Intelligence. Synthese Library (Studies 

in Epistemology, Logic, Methodology, 

and Philosophy of Science), 376. 

Springer, Cham, 2016 

10. NOORI A. & MORADI F. (2015). 

Simulation and Comparison of 

Efficiency in Pathfinding algorithms in 

Games. Ciência e Natura, 37, 230-238 

11. SAZAKI, Y., PRIMANITA, A., M. & 

SYAHROYNI, M. (2018). Pathfinding 

car racing game using dynamic 

pathfinding algorithm and algorithm 

A∗, Proceedings of The 3rd Int. Conf. 

Wirel. Telemat (ICWT 2017), pp. 164-

169 

12. YANNAKAKIS, G.N. & TOGELIUS, 

J., (2018). Artificial Intelligence and 

Games, Springer International 

Publishing, Switzerland  

 


