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Abstract 

This paper presents a brief overview of 

recent developments in chaos 

synchronization in coupled fractional 

differential systems, where the original 

viewpoints are retained. In addition to 

complete synchronization, several other 

extended concepts of synchronization, such 

as projective synchronization, hybrid 

projective synchronization, function 

projective synchronization, generalized 

synchronization and generalized projective 

synchronization in fractional differential 

systems, are reviewed. 

1. Introduction 

Fractional calculus was formulated in 1695, 

shortly after the development of classical 

calculus. The earliest systematic studies 

were attributed to Liouville, Riemann, 

Leibniz, etc. [1,2]. An outline of the simple 

history of fractional calculus can be found in 

Machado et al. [3]. 

For a long time, fractional calculus was 

regarded as a pure mathematical realm 

without real applications. But, in recent 

decades, this has changed. It was found that 

fractional calculus is useful, even powerful, 

for modeling viscoelasticity [4], 

electromagnetic waves [5], boundary layer 

effects in ducts [6], quantum evolution of 

complex systems [7], distributed-order 

dynamical systems [8] and others. That is, 

the fractional differential systems are more 

suitable to describe physical phenomena that 

have memory and genetic characteristics. 

On the other hand, it is known that chaos is 

ubiquitous in most nonlinear systems. 

Owing to the various backgrounds of 

scientific communities, there exist several 

non-equivalent mathematical definitions of 

chaos . However, the criterion that the 

positivity of the largest Lyapunov exponent 

implies chaos is generally accepted. 

The present review has collected most key 

references on chaos synchronization of 

fractional differential systems, where the 

viewpoints of the original contributors are 

retained. The remainder of the article is 

organized as follows. In §2, some basic 

concepts of chaos synchronization of 

fractional differential systems are 

introduced. Section 3 reviews the 

developments in chaos synchronization of 

coupled fractional-order chaotic systems. 

The last section concludes this paper. 

 

2. Some basic concepts 

Let R, R+ and Z+ be the set of real numbers, 

the set of positive real numbers and the set 

of positive integer numbers, respectively. 

Among several definitions for the fractional 

derivative, the Caputo derivative and the 

Riemann–Liouville derivative are most 

familiar. Engineers like to use the former, 

whereas physicists and mathematicians often 

choose the latter. In this paper, the involved 
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fractional derivatives mean the Caputo 

derivative or the Riemann–Liouville 

derivative. These two fractional derivatives 

are not equivalent and have their respective 

applications. 

Definition 2.1 

The αth order Caputo derivative of a 

function f(t) is defined by 

 
 

where m−1< α ≤ m∈Z+ and Γ(⋅) is the 

gamma function. 

Definition 2.2 

The αth order Riemann–Liouville 

derivative of a function f(t) is defined by 

 
 

where m−1 ≤ α < m∈Z+. 

Among various kinds of synchronization, 

CS of two coupled fractional differential 

systems is the same as that of two coupled 

conventional differential systems, which are 

introduced in the appendices A–D. In this 

article, the fractional partially linear system 

is used to define CS, PS and HPS. 

Definition 2.3 

A fractional partially linear system is a set 

of fractional differential equations where the 

state vector can be decomposed into two 

parts, (u,z), in which the equation for z is 

nonlinear in u while that for the fractional 

derivative of the vector u is linear 

in z through a matrix M, which depends only 

on z, in the form of 

 
 

where α is the fractional order and 

dα/dtα denotes 

either  or . 

Now, some basic definitions about 

synchronization are given. 

Consider two copies of a partially linear 

system, which are coupled through the 

variable z in the following manner: 

 
 

where α is the fractional order, 

and um∈Rn and us∈Rn are the state vectors of 

the drive and response systems, respectively. 

Definition 2.4 

The two coupled systems in (2.4) are said to 

reach CS if 

 
 

where ∥⋅∥ denotes a norm (usually, the 

Euclidean norm) of a vector. 

Here, CS is defined through the fractional 

partially linear system (2.4) just for 

simplicity and convenience. CS has other 

coupled forms; see appendices A–D for 

more details. 

Definition 2.5 

The two coupled systems (2.4) are said to 

reach PS if, for the initial conditions, there is 

a constant β such that 

 
 

Definition 2.6 

The two coupled systems (2.4) are said to 

reach HPS, if there 

exist n constants hi (1≤i≤n) such that 

 
 

where H=diag(h1,h2,…,hn) is called the 

scaling matrix and h1,h2,…,hn are the scaling 

factors. 

Definition 2.8 

The two coupled systems (2.8) are said to 

reach FPS if there exists a controller u(x,y) 

such that 

 
 

where K(x)=diag(k1(x),k2(x),…,kn(x)) 

with ki(x) being continuous 

functions, i=1,2,…,n. 

Next, considering the following two 

unidirectionally coupled fractional systems: 
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where x=(x1,x2,…,xn)
T∈Rn, y=(y1,y2,…,ym)T∈

Rm,dpx/dtp=(dp
1x1/dtp1, d

p
2x2/dtp2,…,dp

nxn/dtp
n

)T,dqy/dtq=(dq
1y1/dtq

1,d
q

2y2/dtq2,…,dq
mym/dtq

m

)T, pi, qj∈R+, p=(p1,…,pn),

 and u(t)=(u1(

t),u2(t),…,uk(t))
T with uj(t)=hj(x(t,x0)). 

Definition 2.9 

The two coupled systems (2.10) are said to 

reach GS if there exist a 

transformation , a 

manifold M={(x,y):y=H(x)}, and a 

subset B=Bx×By⊂Rn×Rm with M⊂B, such 

that, with any initial conditions in B, one has 

 
 

Furthermore, consider the following two 

coupled fractional systems: 

 
where α is the fractional 

order, x∈Rn, y∈Rn, , 

, 

 and g(x,0) ≡ f(x). 

Definition 2.10 

The two coupled systems (2.12) are said to 

reach GPS if there exists a constant σ ∈ 
R−{0} such that 

       
 

Note that definitions 2.5–2.10 (whose 

original viewpoints are retained) have some 

relations but their synchronizations appear 

in the fractional differential systems with 

different couplings. 

3. Synchronization of fractional chaotic 

systems 

In this section, typical methods for various 

synchronizations of two coupled fractional 

chaotic systems are reviewed and discussed. 

(a) Complete synchronization 

CS can be achieved by means of different 

coupling schemes. In general, CS can 

roughly be divided into two categories: 

unidirectional coupling (drive–response 

coupling) configuration and bidirectional 

configuration. In a unidirectional coupling 

configuration, the evolution of one of the 

coupled systems is not influenced by the 

other via coupling. On the contrary, in a 

bidirectional coupling configuration both 

systems mutually influence each other . CS 

is the simplest setting in synchronization of 

chaotic systems and is easy to apply in 

practice. 

In the following, numerical and analytical 

methods for CS of the fractional differential 

systems are introduced. 

(i) Numerical methods 

There are two popular numerical methods 

for computing the chaotic attractors of 

fractional systems and their synchronization 

diagrams. One is the frequency-domain 

method and the other is the time-domain 

method. The former is mainly used to 

approximate the transfer function 1/sα. The 

latter is used to directly approximate the 

temporal fractional derivatives. In the study 

by Li et al. , the frequency-domain 

technique was used to numerically analyse 

CS of two identical fractional chaotic 

systems via a one-way coupling 

configuration (A1) (see appendix A), 

with k=cΓ, where c>0 is the coupling 

strength and Γ∈Rn×n is a constant 0–1 matrix 

linking the coupling variables. CS of many 

other fractional chaotic systems via one-way 

coupling was studied numerically. For 

example, CS via one-way coupling of two 

electronic fractional chaotic oscillators in a 

canonical structure was numerically studied 

by Gao & Yu , who pointed out that the 

synchronization rate of a fractional chaotic 

oscillator was slower than its integer-order 

counterpart. The one-way coupling 

technique was also applied to numerically 

https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M2x10
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M2x12
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study CS of chaotic fractional Lü systems  

and of the chaotic fractional Ikeda systems 

with delays. In the study by Ge & Jhuang , 

CS of a fractional rotational mechanical 

system with a centrifugal governor was 

studied for both autonomous and non-

autonomous cases. It was shown that the 

rotational mechanical system, with its total 

order less than or more than the number of 

state variables, exhibited chaos. In addition, 

it was pointed out that practical chaos 

synchronization of different fractional 

systems needs a large coupling strength. 

In the study by Tavazoei & Haeri , however, 

it was pointed out that the time-domain 

method is more reliable than the frequency-

domain method in detecting chaotic 

attractors of fractional differential systems. 

One of the most used time-domain methods 

is the predictor–corrector algorithm . The 

time-domain method is more flexiable than 

the frequency-domain method, since 

approximating the transfer function 1/sα is 

not so convenient if the fractional derivative 

order α has a large number of digits after the 

decimal point. 

CS of the Chua, Rössler and Chen systems 

with different fractional orders was 

investigated numerically by using the 

predictor–corrector algorithm in the time 

domain. By selecting proper parameters, 

numerical results illustrated that 

synchronization of the fractional Chua, 

Rössler and Chen systems is slower than 

that of their respective integer-order 

systems, where the different fractional 

orders lie in (0,1). 

In addition to the one-way coupling 

configuration, a control technique was also 

applied to synchronizing the fractional 

chaotic systems. For example, the 

synchronizations of two identical 

generalized van der Pol systems could be 

achieved, which was called ‘chaos excited 

chaos synchronization’ . Chaos 

synchronization of fractional modified 

Duffing systems was also studied, and was 

called ‘parameter excited chaos 

synchronization’. Moreover, the active 

sliding mode controller  and adaptive 

proportional–integral–derivative controller  

were applied to the synchronization of 

fractional chaotic systems. 

(ii) Laplace transform method 

The Laplace transform theory was applied 

by Deng & Li  to theoretically study CS of 

fractional Lü systems by one-way and 

Pecora–Carroll (PC) coupling configurations 

(see appendix B). And then the Laplace 

transform theory was used to theoretically 

study CS of the Chua systems , the unified 

chaotic systems  and the fractional neuron 

network systems with time-varying delays . 

In the study by Li & Deng , the Laplace 

transform method was applied to 

investigating CS of the fractional Lorenz 

systems (x,y,z) in the PC coupling 

configuration, where (x,z) were driven by y. 

For coupled fractional Lorenz systems, CS 

can also be achieved if the driving signal is 

selected as x , i.e. CS of fractional Lorenz 

systems can be realized using driving 

signal x or y, which is in accordance with the 

case of integer-order Lorenz systems. 

Now, the Laplace transform method for 

synchronization is illustrated by the 

following examples. 

Example 3.1 

Consider two identical Chua circuits in a 

one-way coupling form , in which the drive 

system is described by 

 
 

and the response system by 

 
 

where the fractional orders satisfy 

0<q1,q2,q3≤1, k is the coupling 
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strength, p1 and p2 are positive 

constants, 

 with a<b<0. 

The error dynamical system between 

systems (3.1) and (3.2) is 

 
 

where the error 

variables e1=xs−xm,e2=ys−ym,e3=zs−zm. 

Denoting 

, and applying 

the Laplace transform to both sides of (3.3), 

one obtains 

 
 

With the assumption |E3(s)|≤N∈R+ and 

applying the final-value theorem of the 

Laplace transform , one obtains 

 
 

which implies that CS between 

systems (3.1) and (3.2) is realized. 

If q1=q2=q3=1, system (3.1) is the usual 

Chua system. When the intrinsic parameters 

are chosen 

as p1=10, p2=14.87, a=−1.27, b=−0.68, the 

usual Chua system has a strange attractor. 

Similarly, with the same intrinsic parameter 

values and the order parameters chosen 

as q1=0.92, q2=0.92, q3=0.98, a chaotic 

attractor is produced in the uncoupled 

fractional Chua circuit (3.1) (figure 1). With 

these chosen parameters and k=16, the 

numerical simulation of CS between 

systems (3.1) and (3.2) is illustrated 

in figure 2.

 
Figure 1.  

The fractional Chua circuit in R3. The 

diagram shows that the fractional Chua 

system can also exhibit chaotic behavior, 

where  p1=10,                       p2=14.87,  

a=−1.27, b=−0.68, q1=0.92, q2=0.92, q3=0.9

8.                                     The time step 

length is 0.02, the first 100 points are 

removed. 

 
                                                              

Figure 2.  

The evolution diagram of the 

synchronization errors between (3.1) 

and (3.2), which shows that the fractional 

Chua circuits (3.1) and (3.2) are 

asymptotically synchronized. Solid line 

shows e1(t)=xs−xm; dashed line 

shows e2(t)=ys−ym; and dotted line 

shows e3(t)=zs−zm. 

Here, p1=10, p2=14.87, a= 

−1.27, b=−0.68, q1=0.92, q2=0.92, q3=0.98, 

k=16. 
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From figure 2, one can see that the fractional 

Chua circuit (3.1) and its slave system (3.2) 

with one-way coupling can also reach CS 

with the same parameter values as the 

integer-order forms of (3.1) and (3.2) by 

choosing a suitable coupling parameter k. 

Remark 3.2 

It follows from the above example that the 

fractional orders chosen are close to 1 in the 

numerical simulations. In our opinion, 

according to the 

conclusion

, the 

fractional system can produce a chaotic 

attractor similar to its integer-order 

counterpart with the same parameters. 

In the following, this issue is further 

discussed. For a fractional differential 

system with a derivative order α lying in 

(0,1), the smaller the α is taken, the less 

likely this fractional differential system is to 

display chaotic behaviour. The reason is 

possibly that, as α gets smaller and smaller, 

the stable region becomes larger and larger. 

For simplicity, take the chaotic fractional 

Chua circuit [65] as an example. 

When q1=q2=q3=0.95, other parameters are 

the same as those in 

example 3.1. Figure 3 shows the phase 

portrait. It can be seen that system (3.1) is 

stable. Then, with q1=q2=q3= 0.96, the 

system generates a limit cycle, as shown 

in figure 4. As q1=q2=q3 becomes bigger, 

chaos appears (figure 5) 

where q1=q2=q3=0.965. 

When q1=q2=q3=0.97 and 0.99, chaotic 

attractors are found again, and the phase 

portraits are shown in figures 6 and 7, 

respectively. With the increase of q1=q2=q3, 

the chaotic attractors are more and more 

similar to those of the ordinary Chua system. 

Moreover, q1=q2=q3=0.96 is the critical 

value of transition from stable equilibrium 

dynamics over self-sustained oscillations to 

chaos in the fractional Chua system (3.1), 

which is also demonstrated by a one-

dimensional bifurcation diagram in figure 8. 

 
Figure 3. The phase portrait of the fractional 

Chua system with q1=q2=q3=0.95, a stable 

point. 

 
Figure 4. The phase portrait of the fractional 

Chua system with q1=q2=q3=0.96, a stable 

limit cycle. 

 
Figure 5. The phase portrait of the fractional 

Chua system with q1=q2=q3=0.965, a chaotic 

attractor. 
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Figure 6. The phase portrait of the fractional 

Chua system with q1=q2=q3=0.97, a chaotic 

attractor. 

 
Figure 7. The phase portrait of the fractional 

Chua system with q1=q2=q3=0.99, a chaotic 

attractor. 

 
Figure 8. The transition diagram 

demonstrating the transition from stable 

equilibrium dynamics over self-sustained 

oscillations to chaos as the fractal dimension 

increases in the fractional Chua 

system (3.1). Here, T=100, q1=q2= q3=α. 

Remark 3.3 

From example 3.1, the stability analysis of 

CS between (3.1) and (3.2) discusses the 

stability of the zero solution of the error 

dynamic system of systems (3.1) and (3.2). 

Here, the Laplace transform is used. By 

fixing the parameter values as those in 

example 3.1 and approximately computing 

them from the predictor–corrector 

approach [71], one can find that the set of 

initial conditions leading to synchronization 

between systems (3.1) and (3.2) is not 

arbitrary. Given the drive initial conditions 

(xm(0),ym(0),zm(0))=(0.1,−0.2,0.1), the set of 

response initial conditions leading to 

synchronization between systems (3.1) 

and (3.2) lies in 

 
which can be approximately located by 

numerical calculation. 

In the study by Zhu et al. [72], the Laplace 

transform method was also applied to 

investigating CS of the following fractional 

Chua systems with the coupled matrix 

(k1,k2,k3), where the drive system is given by 

 
 

and the response system by 

 
 

in which f(x) is the same as that in 

example 3.1. 

Taking p1=10.725, p2=10.593, p3=0.268, a=

−1.1726, b=−0.7872, q1=0.93, q2=0.99, q3=0

.92, the fractional Chua system (3.6) also 

has a chaotic attractor. And, for 

systems (3.6) and (3.7), the synchronization 

thresholds were determined by using 

bifurcation graphs. Set the coupled matrix 

(k1,k2,k3) to be (k,0,0). Then, the transition 

diagrams can be obtained as shown 

https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x1
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x1
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https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155C71
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x1
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x2
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x1
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x2
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155C72
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x6
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x6
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x7
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in figure 9.

 
                                    Figure 9.  

The error diagrams of the synchronization 

configuration of the Chua systems (3.6) 

and (3.7). (a) e1 versus k, (b) e1 versus k, 

(c) e2 versus k, (d) e2 versus k, 

(e) e3 versus k, (f) e3 versus k. 

Here, e1=xs−xm, e2=ys−ym, e3=zs−zm. 

From figure 9, it can be seen that the 

coupled system (3.6) and (3.7) with the 

coupled matrix (k,0,0) is synchronized when 

the parameter k is greater than 4. Similarly, 

set the coupled matrix (k1,k2,k3) to be (k,k,0) 

and (k,k,0) in system (3.7), respectively. 

Then, the synchronization can be realized 

when the parameter k is greater than 

approximately 1.0 and 0.5, respectively. 

Thus, it can be seen that the synchronization 

rate of the coupled matrix (k,k,k) is the 

fastest one . 

Example 3.4 

Consider a PC drive–response configuration 

with the drive system given by the fractional 

Lü system (with three state variables 

denoted by the subscript m) and the response 

system given by its subsystem containing 

the (x,z) variables . 

The drive system is described by 

 
and the response system by 

 
 

where 0<q1,q2,q3≤1, the response 

subsystem's variables are denoted by 

subscript s, and the chaotic signal ym is used 

to drive the response subsystem. 

Subtracting system (3.9) from system (3.8) 

leads to the following error dynamical 

system: 

 
 

where e1=xs−xm and e3=zs−zm. Then, 

applying the Laplace transform to (3.10) as 

in example 3.1, one can achieve CS of 

systems (3.8) and (3.9) in the y-drive 

configuration. This result is illustrated by 

Deng & Li, with (a,b,c)=(36,3,20) 

and q1=0.985, q2=0.99, q3=0.98. 

When a=36, b=3, c=20, the usual Lü system, 

i.e. q1=q2=q3=1, has a chaotic attractor. Its 

counterpart also behaves chaotically. 

Systems (3.8) and (3.9) can be 

asymptotically synchronized through a PC 

drive–response configuration. The diagram 

of the synchronization errors is provided in 

Deng & Li . 

Remark 3.5 

The analysis method in example 3.4 is 

almost the same as that in example 3.1. 

Example 3.6 

Consider applying the Laplace transform 

method to the fractional Chua circuit via the 

https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155F9
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x6
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x7
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155F9
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x6
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x7
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x7
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x9
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x8
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x10
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x8
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x9
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x8
https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0155#RSTA20120155M3x9
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active–passive decomposition (APD) 

configuration (see appendix C), 

 
driven by 

signal  

with a<b<0, where qi (i=1,2,3) are positive 

constants in (0,1]. 

By the final-value theorem of the Laplace 

transform, CS between the response system 

and its replica is implemented. When the 

coupling configuration is changed to the 

APD one, the coupled fractional Chua 

systems can be asymptotically synchronized 

with the parameter 

values p1=10, p2=14.87, a=−1.27, b=−0.68, 

q1=0.92, q2=0.92, q3=0.98. 

It is worth noting that the PC scheme for 

synchronization is a special case of the more 

general APD method. The freedom to 

choose the driving signal makes the APD 

scheme flexible in applications. For this 

reason, the APD scheme is usually 

combined with the simple one-way method 

to study CS by using the Laplace transform . 

Example 3.7 

Consider applying the Laplace transform 

method to studying synchronization of the 

fractional Duffing systems by using a 

combination of the APD method and the 

one-way coupling method . The drive 

system is 

 
 

and the response system is 

 
 

where 0<q1,q2≤1, u is a control parameter, 

and  is regarded as the 

driving signal. 

If u=0, then this drive–response 

configuration corresponds to the APD 

method. If  in the drive 

system and  in the response 

system, then it corresponds to the one-way 

coupling method. Applying the Laplace 

transform to the corresponding final-value 

theorem, the CS state can be realized as long 

as u≠−5. By comparing the diagrams of the 

synchronization errors, it is found that this 

synchronization method is more effective 

for the Duffing system, since reaching 

synchronization takes longer than using only 

the APD scheme . 

Apart from the aforementioned 

unidirectional coupling configuration, there 

is a more effective bidirectional coupling 

method (see appendix D) for CS of 

fractional chaotic systems. By applying the 

bidirectional coupling scheme to a pair of 

coupled fractional Rössler systems, 

 
 

and 

 
 

one has the following error dynamical 

system: 

 
 

where 

0<q1,q2,q3≤1, e1=xs−xm, e2=ys−ym and e3=zs−

zm. By using the Laplace transform and the 

final-value theorem, CS between 

systems (3.14) and (3.15) can be achieved 

under some prior assumptions. Select a=0.4 

and q1=q2=q3=0.9, so as to produce chaotic 

dynamics in the uncoupled fractional 

Rössler system. With these parameters 

and c1=0.8, c2=c3=0.6, all the 

synchronization errors ei (i=1,2,3) soon 

converge to zero. The synchronization error 

evolution of the bidirectional coupling 

method is shown 
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in figure 10.

 
Figure 10. Synchronization error evolution 

of the drive–response systems (3.14) 

and (3.15) with the bidirectional coupling 

method, where the phase curves of 

synchronization errors show that the 

synchronized chaotic state is realized, 

where c1=0.8, c2=c3=0.6 and q1=q2=q3=0.9. 

Here, solid line shows e1(t)=xs−xm; dotted 

line shows e2(t)=ys−ym; and dashed line 

shows e3(t)=zs−zm . 

 (iii) Stability analysis 

In this section, the stability theory of 

fractional systems is applied to studying CS 

of fractional chaotic systems with various 

kinds of couplings. It is well known that the 

stability region of the fractional case is 

greater than the stability region of the 

corresponding integer-order case if the 

fractional order lies in (0,1). Based on this 

fact, CS of fractional modified autonomous 

Van der Pol–Duffing (MAVPD) circuits was 

studied by a one-way coupling scheme as 

follows.  

The drive system is 

 
 

and the response system is 

 
 

When α=1, the two coupled integer-order 

MAVPD systems can be asymptotically 

synchronized, if the feedback control 

gains k1,k2 and k3 satisfy the following 

inequalities: 

 
 

where . 

Furthermore, for α∈(0,1], CS of the coupled 

fractional MAVPD systems (3.17) and 

(3.18) can be achieved if ki (i=1,2,3) satisfy 

the conditions (3.19). This can be verified 

(see fig. 6) by selecting the parameter 

values β=200,μ=0.1,ν=100,γ=1.6,α=0.98 and 

the feedback control 

gains k1=280,k2=250,k3=100, which satisfy 

the inequalities (3.19). 

In addition, one can apply the stability 

theory to studying CS of fractional chaotic 

systems by one-way coupling . Especially, 

based on the stability theory of delayed 

fractional differential systems, CS of 

delayed fractional chaotic systems by one-

way coupling was investigated by Deng et 

al. , who simulated CS of the coupled 

Duffing oscillators. 

Next, the stability theory of fractional 

differential systems is employed to 

investigate CS of fractional chaotic systems 

with the PC drive–response configuration. 

Consider the PC drive–response 

configuration with the drive system given by 

the fractional Chen system (with 

subscript m) 

 
 

and the response system chosen as the 

subsystem of (x,z)  
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For the error dynamical system of 

systems (3.20) and (3.21), by applying the 

stability theorem of multi-rational-order 

fractional differential systems , CS is 

achieved for the parameters 

(a,b,c)=(35,3,28), (α1,α2,α3)=(0.9,0.95,0.95). 

For the fractional Lorenz system, several PC 

drive–response configurations were studied 

with the drive system given by the same 

order fractional Lorenz system and the 

response system given by its subsystems 

containing one state variable and two state 

variables. The stability theorem of fractional 

differential systems was applied to discuss 

all possible drive–response subsystems, 

which can divide the Lorenz system. With 

the drive system containing one state 

variable, only two choices can induce CS, 

which agrees with the integer-order Lorenz 

system case. Yet, all possible choices can 

induce the appearance of CS when the drive 

system contains two state variables . 

Conclusion 

This paper presents an overview of chaos 

synchronization of coupled fractional 

differential systems. A list of coupling 

schemes is presented, including one-way 

coupling, PC coupling, APD coupling, 

bidirectional coupling and other 

unidirectional coupling configurations. Also, 

several extended concepts of 

synchronization are introduced, namely, PS, 

HPS, FPS, GS and GPS. Corresponding to 

different kinds of synchronization schemes, 

various analysis methods are presented and 

discussed. 
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