MACHINE LEARNING APPROACH FOR LOAD BALANCING OF VM PLACEMENT CLOUD COMPUTING

Amit Kumar Dhingra

Ph.D Scholar, Sushant University Gurugram, Gurugram, Haryana – 122003, India amit.kumar.dhingra@gmail.com

Dr. Dinesh Rai

Assistant Professor, Department of Engineering & Computer Application,
Sushant University Gurugram,
Gurugram, Haryana – 122003, India
dineshrai@sushantuniversity.edu.in

Abstract

Load balance is the technique of distributing loads to a number of services in various networks. As a result, loads want to be distributed around cloud-based networks, so that each resource plays virtually the same function at different times. The crucial pre-requisite is to provide a quantity of resources to maintain queries in order to operate the program more effectively. Every cloud provider relies on day-to-day load balancing services that allow customers to increase the amount of CPUs or memory to compare their resources to help suit their needs. Its services are optional and unique to the client. We Proposed and Recommend and analyze all of the load balancing algorithms that run in the Cloud Analyst tool and suggest a new modified algorithm that will improve response time and lower costs.

Keywords: load balancing, machine learning VM placement, cloud computing.

INTRODUCTION

The Load balancing is used widely for all kinds of computing infrastructure, such as servers, computer clusters, disk drivers, network connections, CPUs. The method of allocation of tasks between the current nodes of a distributed system is to increase both the efficiency of resources and the response time. It also removes this situation when some nodes are overloaded while other nodes are loaded. With the benefit of the customer base for cloud computing systems, there are a great deal of users on the Internet, it becomes important to confirm that they are deployed on all present repositories for the achievement of high user satisfaction. Load balancer is also useful for other technologies and cloud computing work. This is achieved at multiple stages. In VM level, the scale is mapped in such a manner that the mapping can be performed in order to sustain the load of different programs for current physical computers. At the host level,

the scale is mapped to be organized digitally The computer and host resources will execute separate tasks from the program.

Cloud load balancing is a technique used to deliver unwanted local complex loads to all nodes. It aims to promote better customer interaction and resource allocation[15], ensuring that no single node is overwhelmed and therefore increases the overall performance of the device. The right balance of loads can be useful for the efficient usage of available resources to reduce water use. It also helps to encourage scalability, to enforce failures, to avoid vendors and bottlenecks, to minimize response

times, etc. from the above factors, and to accomplish load balancing in clouds that can be accomplished by utilizing two factors: green computing.

• Energy Consumption Reduction – Load Balancing is useful for preventing overheating by balancing workload in each cloud node, thereby reducing power consumption.

• Carbon Pollution Reduction – Electricity use and carbon pollution are increasing steadily. The higher the resources utilized, the greater the carbon footprint. Energy use is minimized by load balancing, which ensures that carbon emissions aid in the green computing objective.

RELATED WORK

Supervised Learning: This algorithm consists of a target/outcome variable that can be predicted from a certain set of predictors (independent variables). We create a function using these variables, which maps the inputs to the outputs required. The testing process continues until the training data on the model is correct[14].

Regression and classification problems They are mostly. Linear Regression, Support Vector Machines, Closeest Neighbor are supervised learning techniques, Decision Trees. It is mainly used for modeling prediction. Linear Regression Techniques: Linear regression is performed to approximate the variable (Y) depending on a given independent variable (X). This regression methodology identifies a linear relationship between the given X(input) and Y(output vector parameters[3]. X(Input) is a work experience in the above equation and Y (output) is a person's salary. The regression line is ideally matched to our model[14].

Linear Regression Function: Y = a1 + a2XWhere X=Input and Y=Data Labels When training model, the value of Y for a given X value is predicted on the best graph. The model is the best fit for regression by finding the best values for a1 and a2. Where a1= Intercept and X Coefficient a2=Coefficient. Once we find the right a1 and a2 values, we get the best match rows. So if we finally use our formula to forecast, the y value of the input value of X will be expected.

Unsupervised Learning: In this algorithm, we have no predicting/estimating goal or result attribute. It can be used for clustering population into various groups and is commonly used for consumer segmentation for unique interference in different groups[17]. It is used for clustering problems (grouping), identification of faults (in banks for odd transactions) where relationships between the given data are required. K-means arrays, KMedoids Fuzzy C-Means, Neural Networks, Hierarchical are unattended learning strategies.

It is used predominantly in descriptive modeling[14].

PROPOSED METHODOLOGY

In Cloud Computing, carry out the various dynamic load balancing algorithms and even research the task scheduling algorithms. These scheduling algorithms have been used for network control, storage, Internet-based applications and traffic management. Reduce response time and avoid overloading to distribute workload across many network connections. We use two algorithms to distribute the load and verify the time and cost of performance. Throttled algorithm: Throttled algorithm handles a virtual machine index table and is available or busy checking for the state of a virtual machine. User requests are forwarded to the server to first find the appropriate virtual machine for recommended task[1]. The data center calls for a load balancing system to distribute the virtual machine. The Load Balancer scans the virtual machine index table where it is open, or the index table is fully scanned. The data center can pass the request to the virtual machine identified by the identifier if the virtual machine is found. The data center accepts the order and current distribution, and the next time index table is updated. When a client request is handled, the load balancer returns-1 to the data center if the corresponding VM is not located. This proposal is proposed by the Data Center[1]. Throttled Algorithm Steps:

Algorithm phases throttled:

- 1. Maintain a VM index table and VM status (Busy or Available).
- 2. The Controller Datacenter receives a client order.
- 3. For the new mission, the Datacenter Controller refers to the Throttled Load Balancer.
- 4. Throttled Load Balancer, if VM is open, will be tested
- :• Throttled Load Balancer sends the VM ID to the Controller datacenter
- The Controller datacenter sends a particular ID request to the VM.
- The Datacenter Manager notifies the current allocation of the Throttled Load Balancer.

- Throttled Load Balancer checks the Controller index and waits for new demands. When VM Busy:
- Throttled Load Balancer returns -1 to the Controller datacenter.
- The Controller datacenter arranges the order.
- 5. The request and the data center controller will receive an answer and inform the Throttled Load Balancer that it is stopped. 6. If any requests are made, the Controller datacenter will repeat step 3 for the following index and the procedure will be repeated until the index table size is empty.

Equally Spread Current Execution (ESCE):

In this algorithm, the load balancing system constantly checks the work queue and the list of virtual machines. If VM is open, the request will be processed and the request is assigned to VM. If the virtual machine is overloaded, the load needs to be released. The load balancing system distributes some of its features to a virtual machine that is least loaded to equalize each virtual machine[1]. If matches are included in the list, the load balancing device may improve the reaction time and the load time of the job. Load is moved to a slightly loaded virtual machine that performs the job efficiently and takes less time to complete the workflow. However, if the whole virtual machine crashes, one point creates a problem of fault tolerance[4]. Steps in the ESCA algorithm:

- 1. Check for the next available VM.
- 2. Test the allocation table and add the VM to the full duration of the VM.
- 3. If the available Disk is not assigned to build a new one, count the active load on each Cpu.
- 4. Return the VM id that has the least load.
- 5. The VM Load Balancer will delegate the request to the Disk.
- 6. If VM is overwhelmed, the VM Load Balancer will allocate some of the work to the VM with the least work completed so that each VM is filled fairly.
- 7. The data center controller receives the reaction to the request sent and then transfers the waiting requests from the work pool/queue to the available VM.
- 8. Proceed for Step-2.

Selecting a Cloud Simulator Framework

The first step in the cloud supply analysis is to simulate a cloud computing model where simulation enables the provision of a cloud computing model. The simulation software must be used to simulate application frameworks, methods and policies to evaluate the performance of a running load model[5].

• CloudSim is one of the most common and well-known open source cloud simulators. CloudSim can replicate large data centers by virtualizing server hosts. CloudSim is capable of delivering host facilities to virtual machines. CloudSim can also model and simulate energyconscious computing resources and the diverse availability of simulation components. The simulation can be interrupted or resumed at any stage in CloudSim. CloudSim can easily simulate the workload of cloud computing using a range of applications. CloudSim provides support for Cloud System Modeling but also lets users replicate resource modules, such as virtual machine emulation (VMs). CloudSim can support both an inter-and a single cloud.

Networked clouds made up of integrated clouds[5]. CloudSim helps researchers to examine the provision of cloud resource and data centers' energy use.

• ICanCloud is another cloud simulation platform that can model and simulate a variety of cloud computing systems. The main function of iCanCloud is the estimation and forecasting of performance/cost trade-offs between different applications. When considering cost information, ICanCloud may model multiple applications in different hardware. With a broad variety of cloud brokering policies, ICanCloud can develop and model many different computing systems, such as custom VMs with separate unicore and multi-core structures.

Another cloud simulator that focuses on energy usage and the expense of the physical components of a cloud computing network is GreenCloud[6]. The workload of cloud simulations and all of its technology elements in a data center can be measured to assess the total cost of energy consumption using the GreenCloud simulator.

CloudSched often provides an alternative simulation medium for large virtual structures

such as VMs, data centers and individual machines to be designed and repeated. CloudSched may also model a network design using different policy and algorithm programming tools.

• A detailed study[7] of the most popular opensource cloud simulators, including ICanCloud, GreenCloud, CloudSched and CloudSim, has shown that CloudSim is the most computerintensive cloud simulator, data sharing between data centers and internal network communications.

Algorithm	load	time	cost
Traditional	8.4121	31.1427	40.1428
approach			
Proposed	0.3261	14.7390	29.5175
Approach			

Table 1: The performance comparison traditional approach and proposed

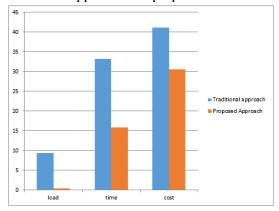


Figure 1: The performance comparison traditional approach and proposed

CONCLUSION

Through researching the current load balancing in VM planning, load balancing in cloud computing settings approaches a planning approach for PSO-based VM-load balancing, a genetic algorithm. Allow VM services to be prepared in a cloud computing environment and benefit from genetically modified algorithms, this approach relies on historical data and precalculates the burden on the whole system if the existing VM service resources required for use are grouped at each physical node and then select the resolution with the least impact value. Because resource nodes in the cloud computing environment are indeterminate, a multi-faceted network comprehension has been implemented to resolve the type of resource nodes. Combine this concept to create a cloud computing load balancing approach focused on multi-faceted

networks. Partial swam optimization technique based on a genetic algorithm that can be used to obtain preferred performance during simulation results.

References

- [1] P. Geetha and C. R. R. Robin, "A comparative-study of load-cloud balancing algorithms in cloud environments," 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017, pp. 806-810, doi: 10.1109/ICECDS.2017.8389549.
- [2] T. Deepa and D. Cheelu, "A comparative study of static and dynamic load balancing algorithms in cloud computing," 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017, pp. 3375-3378, doi: 10.1109/ICECDS.2017.8390086.
- [3] K. D. Patel and T. M. Bhalodia, "An Efficient Dynamic Load Balancing Algorithm for Virtual Machine in Cloud Computing," 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 2019. pp. 145-150. doi: 10.1109/ICCS45141.2019.9065292.
- [4] P. Kumar, D. M. Bundele and D. Somwansi, "An Adaptive Approach for Load Balancing in Cloud Computing Using MTB Load Balancing," 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 2018, pp. 1-5, doi: 10.1109/ICRAIE.2018.8710433.
- [5] S. A. Narale and P. K. Butey, "Throttled Load Balancing Scheduling Policy Assist to Reduce Grand Total Cost and Data Center Processing Time in Cloud Environment Using Cloud Analyst," 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 1464-1467, doi: 10.1109/ICICCT.2018.8473062.
- [6] S. Swarnakar, N. Kumar, A. Kumar and C. Banerjee, "Modified Genetic Based Algorithm for Load Balancing in Cloud Computing," 2020 IEEE 1st International Conference for Convergence in

- Engineering (ICCE), Kolkata, India, 2020, pp. 255-259, doi: 10.1109/ICCE50343.2020.9290563.
- [7] G. Shao and J. Chen, "A Load Balancing Strategy Based on Data Correlation in Cloud Computing," 2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC), Shanghai, China, 2016, pp. 364-368.
- [8] S. Garg, D. D. V. Gupta and R. K. Dwivedi, "Enhanced Active Monitoring Load Balancing algorithm for Virtual Machines in cloud computing," 2016 International Conference System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 2016, pp. 339-344, doi: 10.1109/SYSMART.2016.7894546.
- [9] P. K. Tiwari and S. Joshi, "Dynamic weighted virtual machine live migration mechanism to manages load balancing in cloud computing," 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, 2016, pp. 1-5, doi: 10.1109/ICCIC.2016.7919581.
- [10] V. Velde and B. Rama, "An advanced algorithm for load balancing in cloud computing using fuzzy technique," 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2017, pp. 1042-1047, doi: 10.1109/ICCONS.2017.8250624.
- [11] N. Joshi, K. Kotecha, D. B. Choksi and S. Pandya, "Implementation of Novel Load Balancing Technique in Cloud Computing Environmen," 2018 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2018, pp. 1-5, doi: 10.1109/ICCCI.2018.8441212.
- [12] M. Lagwal and N. Bhardwaj, "Load balancing in cloud computing using genetic algorithm," 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2017, pp. 560-565, doi: 10.1109/ICCONS.2017.8250524.
- [13] S. Joshi and U. Kumari, "Load balancing in cloud computing: Challenges & issues," 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 2016, pp. 120-125, doi: 10.1109/IC3I.2016.7917945.

- [14] Rajawat A.S., Upadhyay P., Upadhyay A. (2021) Novel Deep Learning Model for Uncertainty Prediction in Mobile Computing. In: Arai K., Kapoor S., Bhatia R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3 49
- [15] Vishalika and D. Malhotra, "LD_ASG: Load Balancing Algorithm in Cloud Computing," 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 2018, pp. 387-392, doi: 10.1109/PDGC.2018.8745948.
- [16] Sakshi and N. S. Ghumman, "Cloud computing model and its load balancing algorithms," 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2016, pp. 2940-2943.
- [17] Anand Singh Rajawat Sumit Jain Kanishk Barhanpurkar, Fusion protocol for improving coverage and connectivity WSNs, IET Wireless Sensor Systems, https://doi.org/10.1049/wss2.12018
- [18] H. H. Bhatt and H. A. Bheda, "Enhance load balancing using Flexible load sharing in cloud computing," 2015 1st International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 2015, pp. 72-76, doi: 10.1109/NGCT.2015.7375085.
- [19] R. Panwar and B. Mallick, "Load balancing in cloud computing using dynamic load management algorithm," 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 2015, pp. 773-778, doi: 10.1109/ICGCIoT.2015.7380567.
- [20] A. S. Rajawat and A. R. Upadhyay, "Web Personalization Model Using Modified S3VM Algorithm For developing Recommendation Process," 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 2020, pp. 1-6, doi: 10.1109/IDEA49133.2020.9170701.