FUZZY SEMI GROUPS

Dr.S.V.B.Subrahmanyeswara Rao^{*,1}, B.V.Manikanta², T.Sangeeth Chakravarthi³, M.V.S.S.Kiran Kumar⁴

 Professor, Department of Mathematics, Ramachandra College of Engineering, Eluru, A.P
Research Scholar, Amity University, Rajasthan and Assistant Professor, Department of Mathematics, Ramachandra College of Engineering, Eluru, A.P

3. Assistant Professor, Department of Mathematics, Ramachandra College of Engineering, Eluru, A.P.

4. Associate Professor, Department of Mathematics, Ramachandra College of Engineering, Eluru, A.P

¹svbsrao@rcee.ac.in

Abstract

The main aim of this article is to introduce the concept of a sup-hesitant fuzzy ideal, which is a generalization of a hesitant fuzzy ideal and an interval-valued fuzzy ideal, in a ternary semigroup. Some characterizations of a sup-hesitant fuzzy ideal are examined in terms of a fuzzy set, a hesitant fuzzy set, and an interval valued fuzzy set. Further, we discuss the relation between an ideal and a generalization of a characteristic hesitant fuzzy set and a characteristic interval-valued fuzzy set.

Keywords: Ternary semigroup, sup-hesitant fuzzy ideal, Hesitant fuzzy ideal, Interval-valued fuzzy ideal

1. Introduction

Ternary algebraic structures were introduced by Lehmer [1] in 1932, who examined exact ternary algebraic structures called triplexes, which turned out to be ternary groups. Ternary semigroups were first introduced by Stefan Banach, who showed that a ternary semigroup does not necessarily reduce to a semigroup. In 1965, Sioson [2] studied ideal theory in ternary semigroups. In addition, Iampan [3] studied the lateral ideal of a ternary semigroup in 2007. Ideal theory is an important concept for studying ternary semigroups and algebraic structures.

After the concept of a fuzzy set was introduced by Zadeh [4], the ideal theory in a ternary semigroup was extended to fuzzy ideal theory, bipolar fuzzy ideal theory, interval-valued fuzzy ideal theory, and hesitant fuzzy ideal theory in a ternary semigroup. In 2012, Kar and Sarkar [5] introduced a fuzzy left (lateral, right) ideal and fuzzy ideal of a ternary semigroup and used a fuzzy set to characterize a regular (intra-regular) ternary semigroup. In 2015, Ansari and Masmali [6] studied the bipolar (λ , δ)-fuzzy ideal of a ternary semigroup. In 2016, Jun et al. [7] introduced a hesitant fuzzy semigroup with a frontier and studied the hesitant union and

hesitant intersection of two hesitant fuzzy semigroups with a frontier. Muhiuddin [8] introduced a hesitant fuzzy G-filter for a residuated lattice and provided some conditions for a hesitant fuzzy filter to be a hesitant fuzzy G-filter. In 2018, Suebsung and Chinram [9] studied an interval-valued fuzzy ideal extension of a ternary semigroup. In 2019, Muhiuddin et al. [10] introduced an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy left (right, lateral) ideal in a ternary semigroup. In addition, in 2020, Talee et al. [11] introduced a hesitant fuzzy ideal and a hesitant fuzzy interior ideal in an ordered Γ -semigroup and characterized a simple ordered Γ -semigroup in terms of a hesitant fuzzy simple ordered Γsemigroup.

The main aim of this article is to introduce the concept of a sup-hesitant fuzzy ideal of a ternary semigroup, which is a generalization of a hesitant fuzzy ideal and an interval-valued fuzzy ideal in a ternary semigroup. Some characterizations of an sup-hesitant fuzzy ideal are examined in terms of a fuzzy set, a hesitant fuzzy set, and an interval valued fuzzy set. Further, we discuss the relation between an ideal and a generalization of a characteristic hesitant fuzzy set and a characteristic interval-valued fuzzy set.

2. Preliminaries

In the following sections, we introduce some definitions and results that are important for the present study.

By a ternary semigroup, we mean a set $T \neq \emptyset$ with a ternary operation $T \times T \times T \rightarrow T$, written as $(t_1, t_2, t_3) \mapsto t_1 t_2 t_3$ satisfying the identity (for all $t_1, t_2, t_3, t_4, t_5 \in T$) $((t_1t_2t_3)t_4t_5 = t_1(t_2t_3t_4)t_5 = t_1t_2(t_2t_3t_4)t_5 = t_1t_2(t_2t_3t$ $t_3t_4t_5$)). Throughout this paper, T is represented as a ternary semigroup. Let $X \neq \emptyset$, $Y \neq \emptyset$, and $Z \neq \emptyset$ be subsets of T. We define the

Definition 2.1 [5]

Let f be the FS in T. Then, f is said to be

subset XYZ of T as follows: XYZ = $\{xyz \mid x \in X, y \in Y, z \in Z\}$. A subset $A \neq \emptyset$ of T is said to be a left (lateral, right) ideal (L(Lt, R)I) of T and TTA \subseteq A (TAT \subseteq A, ATT \subseteq A). If the subset is an LI, LtI, and RI of T, then it is said to be an ideal (Id) of T.

A fuzzy set (FS) f [4] in set $X \neq \emptyset$ is a mapping from X to the unit segment of the real line [0, 1]. Kar and Sarkar [5] studied an FS in a ternary semigroup and introduced the concepts of a fuzzy left (lateral, right) ideal and a fuzzy ideal of ternary semigroups as follows:

- (1) a fuzzy left ideal (FLI) of T while (for all $t_1, t_2, t_3 \in T$)($f(t_3) \le f(t_1t_2t_3)$), •
- (2) a fuzzy lateral ideal (FLtI) of T while (for all $t_1, t_2, t_3 \in T$)($f(t_2) \le f(t_1t_2t_3)$), •
- (3) a fuzzy right ideal (FRI) of T while (for all $t_1, t_2, t_3 \in T$)($f(t_1) \le f(t_1t_2t_3)$), or
- (4) a fuzzy ideal (FI) of T while f is an FLI, an FLI, and an FRI of T, that is, (for all $t_1, t_2, t_3 \in T$)(max{ $f(t_1), f(t_2), f(t_3)$ } $\leq f(t_1t_2t_3)$).

Let [[0, 1]] be the set of all closed subintervals of [0, 1]; that is

 $[[0,1]] = \{[t,t+]|t,t+\in[0,1] \text{ and } t \le t+\}.$

Let $1^{=}[t-1,t+1],t2^{=}[t-2,t+2] \in [[0,1]]$. We define the operations $\leq =, <,$ and rmax as follows:

- (1) $t1^{\pm}t2^{\pm}t^{-1}\leq t^{-2}, t^{\pm}1\leq t^{+2}, t^{\pm}t^{\pm}$
- (2) $t1^{=}t2^{+}+1=t-2, t+1=t+2, t+1=t+1=t+2, t+1=t+1=t+2, t+1=t+1=t+2, t+1=t+2, t$ ٠
- (3) $t1^{\star}t2^{\star} \Leftrightarrow t1^{\star} \le t2^{\star}, t1^{\star} \ne t2^{\star},$ •
- (4) $\max\{t1^{,}t2^{}\}=[\max\{t-1,t-2\},\max\{t+1,t+2\}].$

Let $X \neq \emptyset$ be a set. A mapping $\hat{v}: X \rightarrow [[0, 1]]$ is said to be an interval-valued fuzzy set (IvFS) [12] on X, where for any $x \in X$, $\hat{v}(x) = [v^{-}(x), v^{+}(x)]$, anything v^{-} and v^{+} are FSs in X such that $v^{-}(x) \le v^{+}(x)$. For a subset A of X, the characteristic interval-valued fuzzy set CIA of A on X is defined by

CIA:X \rightarrow [[0,1]],x \mapsto {1^0^if x \in A,otherwise,

where 0 = [0, 0] and 1 = [1, 1].

Definition 2.2 [9]

Let \hat{v} be an IvFS on T. Then, \hat{v} is said to be

- (1) an interval-valued fuzzy left ideal (IvFLI) of T while (for all $t_1, t_2, t_3 \in T$)($\hat{v}(t_3) \leq \hat{v}(t_1t_2t_3)$),
- (2) an interval-valued fuzzy lateral ideal (IvFLtI) of T while (for all $t_1, t_2, t_3 \in T$)($\hat{v}(t_2) \leq \hat{v}(t_1 t_2 t_3)$).
- (3) an interval-valued fuzzy right ideal (IvFRI) of T while (for all $t_1, t_2, t_3 \in T$)($\hat{v}(t_1) \leq \hat{v}(t_1 t_2 t_3)$),
- (4) an interval-valued fuzzy ideal (IvFI) of T while it is an IvFLI, an IvFLI, and an IvFRI of T, that is, (for all $t_1, t_2, t_3 \in T$)(rmax { $\hat{v}(t_1), \hat{v}(t_2), \hat{v}(t_3)$ } $\leq \hat{v}(t_1t_2t_3)$).

Theorem 2.3 [9]

A subset $A \neq \emptyset$ of T is an Id of T if and only if CI_A is an IvFI of T.

Torra and his colleague [13,14] defined a hesitant fuzzy set (HFS) on a set $X \neq \emptyset$ in terms of a mapping h that, when applied to X, returns a subset of [0, 1], that is, h: $X \to \wp[0, 1]$, where $\wp[0, 1]$ denotes the set of all subsets of [0, 1]. Talee et al. [15] applied the concept of an HFS to a ternary semigroup and introduced the concepts of a hesitant fuzzy left (lateral, right) ideal and a hesitant fuzzy ideal of a ternary semigroup as follows:

Definition 2.4 [15]

Let h be an HFS on T. Then, h is said to be

- (1) a hesitant fuzzy left ideal (HFLI) of T while (for all $t_1, t_2, t_3 \in T$)($h(t_3) \subseteq h(t_1t_2t_3)$),
 - (2) a hesitant fuzzy lateral ideal (HFLtI) of T while (for all $t_1, t_2, t_3 \in T$)($h(t_2) \subseteq h(t_1t_2t_3)$),
- (3) a hesitant fuzzy right ideal (HFRI) of T while (for all $t_1, t_2, t_3 \in T$)($h(t_1) \subseteq h(t_1t_2t_3)$),
- (4) a hesitant fuzzy ideal (HFI) of T while it is a HFLI, a HFLI, and a HFRI of T, that is, (for all $t_1, t_2, t_3 \in T$)(h(t_1) \cup h(t_2) \cup h(t_3) \subseteq h($t_1t_2t_3$)).

For a subset A of a set $X \neq \emptyset$, define the characteristic hesitant fuzzy set (CHFS) CH_A of A on X as follows:

CHA:X \rightarrow P[0,1],x \mapsto {[0,1]Øwhile x \in A,otherwise.

Theorem 2.5 [15]

A subset $A \neq \emptyset$ of T is an Id of T if and only if CH_A is an HFI of T.

It is well known that an HFS on T is a generalization of the concept of an IvFS on T. In general, we can see that the HFI of T is not an IvFI of T, and an IvFI of T is not an HFI of T, as shown in Example 2.6.

Example 2.6

Consider a ternary semigroup $T = \{-i, 0, i\}$ under the usual multiplication over a complex number.

- (1) Define an HFS h on T by $h(i) = h(-i) = \{0.1, 0.2, 0.3, 0.5\}$ and h(0) = [0.1, 0.5], and we have h as an HFI of T but not an IvFI of T because h is not an IvFS on T.
- (2) Define an IvFS \hat{v} on T by $\hat{v}(-i) = \hat{v}(i) = [0, 0.5]$ and $\hat{v}(0) = [0.5, 1]$, and we have \hat{v} as an IvFI of T but not an HFI of T because
- $v^{(i)} \cup v^{(-i)} \cup v^{(0)} = [0,1] \square [0.5,1] = v^{(0)} = v^{((i)(0)(-i))}.$
- (3) Define an IvFS g on T by g(i) = g(-i) = [0, 0.4] and g(0) = [0, 1]. Then, g is both an HFI and an IvFI of T.

3. Main Results

For $\nabla \in \mathscr{P}[0, 1]$, define SUP ∇ by SUP ∇ ={sup ∇ 0while $\nabla \neq \emptyset$, otherwise.

For an HFS h on X and $\nabla \in \wp[0, 1]$, we define SUP [h; ∇] as SUP [h; ∇]={x \in X|SUP h(x) \geq SUP ∇ }.

Definition 3.1

Given $\nabla \in \mathscr{P}[0, 1]$, an HFS h on T is said to be a sup-hesitant fuzzy left (lateral, right) ideal of T related to ∇ (∇ -sup-HFL(Lt, R)I of T), whereas the set SUP [h; ∇] is an L(Lt, R)I of T. If h is a ∇ -sup-HFL(Lt, R)I of T for all $\nabla \in \mathscr{P}[0, 1]$ when SUP [h; ∇] $\neq \emptyset$, then h is said to be a sup-hesitant fuzzy left (lateral, right) ideal (sup-HFL(Lt, R)I) of T.

Definition 3.2

An HFS h on T is said to be a sup-hesitant fuzzy ideal of T related to ∇ (∇ -sup-HFI of T), whereas it is an ∇ -sup-HFLI, a ∇ -sup-HFLI, and a ∇ -sup-HFRI of T. If h is a ∇ -sup-HFI of T for all $\nabla \in \mathscr{D}[0, 1]$ when SUP [h; ∇] $\neq \emptyset$, then h is said to be a sup-hesitant fuzzy ideal (sup-HFI) of T.

Lemma 3.3

All IvFL(Lt, R)Is of T are a sup-HFL(Lt, R)I.

Proof

Suppose that \hat{v} is an IvFLI of T and $\nabla \in \mathscr{D}[0, 1]$ such that SUP $[\hat{v}; \nabla] \neq \emptyset$. Let $a, b \in T$, and let $c \in SUP$ $[\hat{v}; \nabla]$. Then, sup $\hat{v}(c) \ge SUP \nabla$. Because \hat{v} is an IvFLI of T, we have SUP $\nabla \le \sup \hat{v}(c) = v+(c) \le v+(abc) = \sup \hat{v}(abc)$.

•

Thus, $abc \in SUP[\hat{v}; \nabla]$. Hence, $SUP[\hat{v}; \nabla]$ is an LI of T, which indicates that \hat{v} is a ∇ -sup-HFLI of T. Therefore, we conclude that \hat{v} is a sup-HFLI of T. From Lemma 2.2, we obtain Theorem 2.4.

From Lemma 3.3, we obtain Theorem 3.4.

Theorem 3.4

All IvFIs of T are a sup-HFI.

The converses of Lemma 3.3 and Theorem 3.4 are not true, as shown in Example 3.5.

Example 3.5

Consider a ternary semigroup T = {O, A, B, C, D, I} under the usual matrix multiplication, where O=(0000), A=(1000), B=(0010), C=(0100), D=(0001), I=(1001). Define an IvFS \hat{v} on T by

 $v^{(O)}=[0,1], v^{(A)}=[0.4,1], v^{(B)}=[0.6,1], v^{(C)}=v^{(D)}=[0.5,1], v^{(I)}=0^{\circ}.$ Thus, v° is a sup-HFI of T but not an IvFI of T. Moreover, we know that

- (1) \hat{v} is not an IvFLI of T because $\hat{v}(OAB) = [0, 1] \prec [0.6, 1] = \hat{v}(B)$.
- (2) \hat{v} is not an IvFLtI of T because $\hat{v}(OAB) = [0, 1] \prec [0.4, 1] = \hat{v}(A)$.
- (3) \hat{v} is not an IvFRI of T because $\hat{v}(CBO) = [0, 1] < [0.5, 1] = \hat{v}(C)$.

From Lemma 3.3, Theorem 3.4, and Example 3.5, we find that in an arbitrary ternary semigroup, a sup-HFL(Lt, R)I is a generalization of the concept of an IvFL(Lt, R)I, and a sup-HFI is a generalization of the concept of an IvFL.

Lemma 3.6

All HFL(Lt, R)Is of T are a sup-HFL(Lt, R)I.

Proof

Suppose that h is an HFLI of T and $\nabla \in \mathscr{D}[0, 1]$ such that SUP [h; $\nabla] \neq \emptyset$. Let a, b \in T and c \in SUP [h; $\nabla]$. Then, SUP h(c) \geq SUP ∇ . Because h is an HFLI of T, we have h(c) \subseteq h(abc) and thus SUP h(c) \leq SUP h(abc). Therefore, abc \in SUP [h; $\nabla]$. Hence, SUP [h; $\nabla]$ is an LI of T, which signifies that h is a ∇ -sup-HFLI of T. We thus conclude that h is a sup-HFLI of T.

From Lemma 3.6, we obtain Theorem 3.7.

Theorem 3.7

All HFIs of T are a sup-HFI. Example 3.8 shows that the converses of Lemmas 3.6 and Theorem 3.7 do not hold.

Example 3.8

Define an HFS h on T as

 $h(O) = \{0,1\}, h(X) = [0,1], h(Y) = h(Z) = [0,1), h(I) = \emptyset.$

Thus, h is a sup-HFI of T, but not an HFI of T. Moreover, we know that

• (1) h is not an HFLI of T because $h(X) = [0, 1] \supset \{0, 1\} = h(OYX)$.

- (2) h is not an HFLtI of T because $h(X) = [0, 1] \supset \{0, 1\} = h(OXI)$.
- (3) h is not an HFRI of T because $h(X) = [0, 1] \supset \{0, 1\} = h(XOZ)$.

From Lemma 3.6, Theorem 3.7, and Example 3.8, we find that in an arbitrary ternary semigroup, a sup-HFL(Lt, R)I is a generalization of the concept of an HFL(Lt, R)I, and a sup-HFI is a generalization of the concept of an HFL.

Let h be an HFS on T, and define the FS F_h in T as $Fh:T\rightarrow[0,1],x\mapsto SUP h(x)$.

© 2021 JPPW. All rights reserved

The following lemma characterizes the sup-types of HFSs on T by FS F_h.

Lemma 3.9

An HFS h on T is a sup-HFL(Lt, R)I of T if and only if F_h is an FL(Lt, R)I of T. **Proof**

Suppose that h is an sup-HFLI of T. Let a, b, $c \in T$, and let $\nabla = h(c)$. Then, $c \in SUP$ [h; ∇]. Thus, h is a ∇ -sup-HFLI of T, which indicates that SUP [h; ∇] is an LI of T. Hence, abc \in SUP [h; ∇] and thus Fh(abc)=SUP h(abc)=SUP h(c)=Fh(c).

Therefore, F_h is an FLI of T. Conversely, suppose that F_h is an FLI of T and $\nabla \in \wp[0, 1]$ such that SUP $[h; \nabla] \neq \emptyset$. Let $a, b \in T$ and $c \in$ SUP $[h; \nabla]$. Then, SUP $h(abc)=Fh(abc)\geq Fh(c)=SUP h(c)\geq SUP \nabla$, and it is implied that $abc \in SUP [h; \nabla]$. Hence, SUP $[h; \nabla]$ is an LI of T; that is, h is a ∇ -sup-HFLI of T. Therefore, we conclude that h is a sup-HFLI of T. Let h be an HFS on T and $\nabla \in \wp[0, 1]$, and we define the HFS H $(h; \nabla)$ on T as (for all $x \in T$)(H $(h; \nabla)(x) = \{t \in \nabla | SUP h(x) \geq t\}$).

We then denote $H(h; \bigcup_{x \in T} h(x))$ by H_h and H(h; [0, 1]) by I_h . Then, I_h is an IvFS on T.

Remark 3.10

If h is an HFS on T, then $h(x) \subseteq H_h(x) \subseteq I_h(x)$ and SUP $h(x) = SUPH_h(x) = supI_h(x)$ for all $x \in T$. Now, we study sup-types of HFSs on T using the HFS $H(h; \nabla)$ and the IvFS I_h .

Lemma 3.11

An HFS h on T is a sup-HFL(Lt, R)I of T if and only if H(h; ∇) is a HFL(Lt, R)I of T for all $\nabla \in \wp[0, 1]$.

Proof

Suppose that h is a sup-HFLI of T and $\nabla \in \wp[0, 1]$. Let a, b, $c \in T$. If H(h; ∇)(c) is empty, then H(h; ∇)(c) \subseteq H(h; ∇)(abc). In addition, let $t \in$ H(h; ∇)(c). Then, $t \in \nabla$, SUP h(c) $\geq t$, and $c \in$ SUP [h; h(c)]. Because h is a sup-HFLI of T, we have SUP [h; h(c)] as an LI of T. Hence, abc \in SUP [h; h(c)], which indicates that SUP h(abc) \geq SUP h(c) $\geq t$. Thus, $t \in$ H(h; ∇)(abc). Therefore, H(h; ∇)(c) \subseteq H(h; ∇)(abc). Consequently, H(h; ∇) is an HFLI of T.

Conversely, suppose that H(h; ∇) is an HFLI of T for all $\nabla \in \wp[0, 1]$. Let a, b, $c \in T$ and $\nabla \in \wp[0, 1]$ exist such that $c \in SUP$ [h; ∇]. Then, H(h; ∇)(c) = ∇ , and by assumption, we have $\nabla = H(h; \nabla)(c) \subseteq H(h; \nabla)(abc)$. Thus, SUP h(abc) \geq SUP ∇ , and it is implied that $abc \in SUP$ [h; ∇]. Hence, SUP [h; ∇] is an LI of T; that is, h is a ∇ -sup-HFLI of T. Therefore, we conclude that h is a sup-HFLI of T.

Theorem 3.12

For an HFS h on T, the following statements are equivalent.

- (1) h is a sup-HFL(Lt, R)I of T.
- (2) H_h is an HFL(Lt, R)I of T.
- (3) H_h is a sup-HFL(Lt, R)I of T.
- (4) I_h is an IvFL(Lt, R)I of T.
- (5) I_h is a sup-HFL(Lt, R)I of T.
- (6) I_h is an HFL(Lt, R)I of T.

Proof

 $(1) \Rightarrow (2)$ and $(1) \Rightarrow (6)$. These follow from Lemma 3.11.

 $(2) \Rightarrow (3)$ and $(6) \Rightarrow (5)$. These follow from Lemma 3.6.

 $(4) \Rightarrow (5)$. This follows from Lemma 3.3.

(3) ⇒ (1). Suppose that H_h is an sup-HFLI of T and $\nabla \in \wp[0, 1]$ such that SUP [h; ∇] ≠ \emptyset . Let a, b ∈ T and c ∈ SUP [h; ∇]. Based on Remark 3.10, we have SUPH_h(c) = SUP h(c) ≥ SUP ∇ and thus c ∈ SUP [H_h; ∇]. We assume that SUP [H_h; ∇] is an LI of T, and then abc ∈ SUP [H_h; ∇]. By Remark 3.10 again, we can see that SUP h(abc) = SUPH_h (abc) ≥ SUP ∇ , which signifies that abc ∈ SUP [h; ∇]. Hence, SUP [h; ∇] is an LI of T; that is, h is a ∇ -sup-HFLI of T. We therefore conclude that h is a sup-HFLI of T.

 $(1) \Rightarrow (4)$. Suppose that h is a sup-HFLI of T and a, b, $c \in T$. Then, $c \in SUP$ [h; h(c)], and therefore by assumption we have $abc \in SUP$ [h; h(c)]. Thus, SUP h(c) \leq SUP h(abc), and therefore $I_h(c) = [0, SUP h(c)] \leq [0, SUP h(abc)] = I_h(abc)$. Hence, I_h is an IvFLI of T.

 $(5) \Rightarrow (1)$. Let I_h be an sup-HFLI of T and $\nabla \in \wp[0, 1]$ such that SUP $[h; \nabla] \neq \emptyset$. Let $a, b \in T$ and $c \in SUP$ $[h; \nabla]$. By Remark 3.10, we have sup $I_h(c) = SUPh(c) \ge SUP \nabla$, and thus $c \in SUP [I_h; \nabla]$. We assume that $abc \in SUP [I_h; \nabla]$. By Remark 3.10, we obtain SUP $h(abc) = supI_h (abc) \ge SUP \nabla$, which indicates that $abc \in SUP [h; \nabla]$. Hence, $SUP[h; \nabla]$ is an LI of T, which signifies that h is a ∇ -sup-HFLI of T. Therefore, we conclude that h is a sup-HFLI of T.

From Lemma 3.9 and Theorem 3.12, we obtain Theorem 3.13.

Theorem 3.13

For an HFS h on T, the following statements are equivalent.

- (1) h is a sup-HFI of T.
- (2) (for all a, b, $c \in T$)(SUP h(abc) $\geq \max{SUP h(a), SUP h(b), SUP h(c)}$).
- (3) F_h is an FI of T.
- (4) H_h is an HFI of T.
- (5) H_h is a sup-HFI of T.
- (6) I_h is an IvFI of T.
- (7) I_h is a sup-HFI of T.
- (8) I_h is an HFI of T.

For a subset A of T and ∇ , $\Omega \in \wp[0, 1]$ with SUP $\nabla <$ SUP Ω , we define a map H(∇, Ω)A as follows: H(∇, Ω)A:T \rightarrow P[0,1],x \mapsto { $\Omega \nabla$ while x \in A,otherwise.

Then, $H(\nabla, \Omega)A$ is an HFS on T, which is said to be a sup (∇, Ω) -characteristic hesitant fuzzy set (sup (∇, Ω) -CHFS) of A of T. In addition, sup (∇, Ω) -CHFS with $\nabla = \emptyset$ and $\Omega = [0, 1]$ is the CHFS of A, that is, $H(\emptyset, [0,1])A$ =CHA. Moreover, sup (∇, Ω) -CHFS with $\nabla = 0$ and $\Omega = 1$ is the CIvFS of A, that is, $H(0^{\circ}, 1^{\circ})A$ =CIA.

Theorem 3.14

Let a subset $A \neq \emptyset$ of T and ∇ , $\Omega \in \wp[0, 1]$ exist such that SUP $\nabla <$ SUP Ω . Then, A is an Id of T if and only if $H(\nabla, \Omega)A$ is an sup-HFI of T.

Proof

Suppose that there exist a, b, $c \in T$ such that SUP H(∇,Ω)A(abc)<max {SUP H(∇,Ω)A(a), SUP H(∇,Ω)A(b), SUP H(∇,Ω)A(c)}. Then, H(∇,Ω)A(a)= Ω , H(∇,Ω)A(b)= Ω , or H(∇,Ω)A(c)= Ω , which signifies that $a \in A, b \in A$, or $c \in A$. Because A is an Id of T, we have abc $\in A$ and H(∇,Ω)A(abc)= Ω . Thus, SUP H(∇,Ω)A(abc)=max {SUP H(∇,Ω)A(a),SUP H(∇,Ω)A(b),SUP H(∇,Ω)A(c)} is a contradiction. Hence, SUP H(∇,Ω)A(abc)≥max {SUP H(∇,Ω)A(a),SUP H(∇,Ω)A(b),SUP H(∇,Ω)A(c)} for all a, b, $c \in T$, and by Theorem 3.13, we have H(∇,Ω)A being a sup-HFI of T. Conversely, let $a \in A$ and $x, y \in T$. Then $H(\nabla,\Omega)A(a)=\Omega$. Because $H(\nabla,\Omega)A$ is a sup-HFI of T, and by Theorem 3.13, we have SUP $H(\nabla,\Omega)A(axy)\geq max {SUP H(\nabla,\Omega)A(a), SUP H(\nabla,\Omega)A(x), SUP H(\nabla,\Omega)A(y)}, SUP H(\nabla,\Omega)A(xay)\geq ma$

 $x \{SUP H(\nabla, \Omega)A(a), SUP H(\nabla, \Omega)A(x), SUP H(\nabla, \Omega)A(y)\},$ and

SUP H(∇ , Ω)A(xya) \geq max {SUP H(∇ , Ω)A(a),SUP H(∇ , Ω)A(x),SUP H(∇ , Ω)A(y)}=SUP Ω . Thus,

SUP $H(\nabla, \Omega)A(axy)$ =SUP $H(\nabla, \Omega)A(xay)$ =SUP $H(\nabla, \Omega)A(xya)$ =SUP Ω ,

which indicates that axy, xay, xya \in A. Hence, A is the Id of T.

From Theorems 2.3, 2.5, 3.4, 3.7, and 3.14, we obtain Theorem 3.15.

Theorem 3.15

For a subset $A \neq \emptyset$ of T, the following statements are equivalent.

- (1) A is an Id of T.
- (2) CI_A is an IvFI of T.
- (3) CI_A is a sup-HFI of T.
- (4) CH_A is an HFI of T.
- (5) CH_A is a sup-HFI of T.
- (6) $H(\nabla, \Omega)A$ is a sup-HFI of T for all $\nabla, \Omega \in P[0, 1]$ with SUP $\nabla <$ SUP Ω

4. Conclusion

In this paper, we introduced the concept of a sup-HFI in a ternary semigroup, which is a generalization of an HFI and an IvFI in a ternary semigroup, and examined some characterizations of a sup-HFI in terms of an FS, an HFS, and an IvFS. Further, we discussed the relation between an Id and the generalizations of CHFSs and CIvFSs. As important study results, we found that the following statements are all equivalent in a ternary semigroup T: A subset A is an Id, CI_A is an IvFI, CI_A is a sup-HFI.

In the future, we will study a sup-HFI in a Γ semigroup and examine some characterizations of a sup-HFI in terms of an FS, an HFS, and an IvFS.

References

- Ansari, MA, and Masmali, IA (2015). Ternary Semigroups in Terms of Bipolar (λ, δ)-Fuzzy Ideals. International Journal of Algebra. 9, 475-486. http://doi.org/10.12988/ija.2015.5740
- 2. Dr SVB Subrahmanyeswara Rao , M Sudheer Kumar , MVSS Kiran Kumar, Dr T Srinivasa Rao (2020). On Anti Fuzzy ideals in Subtraction semigroups. Journal of Critical Reviews, 18(7), 82-86.

- 3. Dr SVB Subrahmanyeswara Rao (2019). *Fuzzy Logic-Its Contributions to Daily Life*. International Journal of Management, Technology and Engineering, 9(2), 2708-2713.
- 4. Iampan, A (2007). Lateral ideals of ternary semigroups. Ukrainian Mathematical Bulletin. *4*, 525-534.
- Jun, YB, Song, SZ, and Muhiuddin, G (2016). Hesitant fuzzy semigroups with a frontier. Journal of Intelligent & Fuzzy Systems. 30, 1613-1618. http://doi.org/10.3233/IFS-151869
- Kar, S, and Sarkar, P (2012). Fuzzy ideals of ternary semigroups. Fuzzy Information and Engineering. 4, 181-193. https://doi.org/10.1007/s12543-012-0110-4
- Lehmer, DH (1932). A ternary analogue of abelian groups. American Journal of Mathematics. 54, 329-338. https://doi.org/10.2307/2370997
- 8. Muhiuddin, G (2016). Hesitant fuzzy filters and hesitant fuzzy G-filters in residuated lattices. Journal of Computational Analysis & Applications. 21, 394-404.
- Muhiuddin, G, Rehman, N, and Jun, YB (2019). A generalization of (∈, ∈ ∨ q)-fuzzy ideals in ternary semigroups. Annals Communications in Mathematics. 2, 73-83

- 10. Sioson, FM (1965). Ideal theory in ternary semigroups. Math Japon. 10, 63-84.
- Suebsung, S, and Chinram, R (2018). Interval valued fuzzy ideal extensions of ternary semigroups. International Journal of Mathematics and Computer Science. 13, 15-27.
- 12. Torra, V, and Narukawa, Y. On hesitant fuzzy sets and decision., Proceedings of 2009 IEEE International Conference on Fuzzy Systems, 2009, Jeju, South Korea, Array, pp.1378-1382. https://doi.org/10.1109/FUZZY.2009. 5276884
- 13. Torra, V (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems. 25, 529-539. https://doi.org/10.1002/int.20418
- 14. Talee, AF, Abbasi, MY, and Khan, SA (2018). Hesitant fuzzy sets approach to ideal theory in ternary semigroups. International Journal of Applied Mathematics. *31*, 527-539.
- 15. Talee, AF, Abbasi, MY, Muhiuddin, G, and Khan, SA (2020). Hesitant fuzzy sets approach to ideal theory in ordered Γ semigroups. Italian Journal of Pure and Applied Mathematics. *43*, 73-85.
- 16. Zadeh, LA (1965). Fuzzy sets. Information and Control. 8, 338-3. https://doi.org/10.1016/S0019-9958(65)90241-X
- 17. Zadeh, LA (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences. 8, 199-249. https://doi.org/10.1016/0020-0255(75)90036-5