
Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 3, 6361–6369

© 2022 JPPW. All rights reserved

Using Deep Learning and Dependency Matrix Structure Perform

Optimization and Increase the Accuracy Rate

M. Sangeetha

Research Scholar, Sathyabama Institute of Science and Technology,

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai – 600 119, Tamilnadu, India/ Associate Professor,

Department of Computer Science and Engineering, Panimalar Engineering College, Poonamallee,

Chennai – 600 123, Tamilnadu, India.

S. Malathi

 Professor, Department of Computer Science and Engineering,

 Panimalar Engineering College, Poonamallee, Chennai – 600 123, Tamilnadu, India.

Abstract

Software Testing is a perceived software development life cycle methodology, which is used to test

the software product quality by writing test logic that matches with customer requirements.

Interactions/relationships between systems or sub systems or modules in an application are called

dependency. We use software in different contexts like Aircrafts, Medical Equipment’s, Stock

exchanges, Space systems, banks, Machine production etc., Software also manage enterprises and

their bonding to clients and suppliers. It also supports taking strategic decisions in business

organizations. Reliability and performance of software is very crucial to consider for effective

management of our systems. Earlier in the past, few techniques have been derived considering

dependency structures in applications which enables to select test case prioritization both manually

and using internal or open-source or commercial vendor based automated tools. This paper analyzes

the application dependency structure algorithms to effectively plan the module sequences prioritize

the optimized test cases using a novel Deep Diverse Prototype Forest Model by improving

performance and efficiency.

Keywords: Prioritization, Dependency, Optimization; Medical Equipment; Test cases; Defects.

1. Introduction

Programming Engineering is a designing order

that focuses on various phases of programming

creation [2]. Programming isn't produced all in

all unit, it has distinctive stages to be specific

"Plan", "Investigate", "Outline", "Coding",

"Testing" and "Execution. Effective

Successful programming testing will add to the

conveyance of solid and quality situated

programming item. A quality item has more

fulfilled clients, brings down support cost, and

reduces rework and more exact and solid

outcomes. The need for high reliability

products in one hand, defective

system/components on the other hand makes

the software organizations to depend more on

Software testing as a discipline to identify the

defects in the software before it is deployed in

the client environment.

All product building ventures includes devoted

testing as a different stage. Due to quick

innovation development and intensity in

genuine client business, "time" and "spending

plan" assume a noteworthy part and these two

are the key achievement factors in venture

culmination [4]. To lead the undertaking in

more effective way, most extreme quality must

be guaranteed in the meantime, limit the

venture cost and decrease the conveyance

time. Continuously, to expand the viability and

proficiency of testing inside constrained

arranged assets, powerful experiment

prioritization considering the business requests

can be performed. TCP is a procedure of

sorting out or choosing the experiments in

succession to expand the blame recognition

rate at the soonest, which finds most basic

deformities as prior as conceivable in the

product testing life cycle. Testing expenses

will go down if we distinguish absconds as

right on time as conceivable in the testing life

cycle.

Early detection of defects in software product

reduces “rework costs” as it saves time and

M. Sangeetha 6362

© 2022 JPPW. All rights reserved

effort in the overall testing life cycle. Say for

example: We have the following software

development phases namely: Requirements,

Design, Coding, Testing and Deployment.

Bugs/Defects can introduce in any of the said

phases. Identifying the right defect at the right

stage is a critical task for the testing team. It

means defects getting originated from

requirement phase must get identified and

fixed in requirement phase it. This is

technically known as “Stage Containment” –

identifying the defect at the right test stage.

This validates one of the 7 principles of testing

– “Defect Clustering” or “80-20 rule”. This

technique believes the principle that 80% of

defects are revealed in 20% of the overall

code. This technique is suited for projects

where we have multiple test partitioned

identified with different expected outcomes.

State transition

It is used to determine the invalid system

transitions. This testing technique is used in

the application design. State Transition testing

technique represents the system behavior as

finite number of states. This technique is

useful when analysis and system testing are

dependent on previous and current behavior,

previous and current states. The test lead

prepares it when the testing timelines are

defined. It chooses the starting point, where

we begin examining an application or system.

Understand all the states that an object or user

can be in. Identify the transitions (events,

conditions, actions) that are applicable to each

state. Build a table or diagram to describe the

states transitions.

2. Related Work

Test design optimization has been proposed in

various studies. It analyzed by various people

by different stages. Wang, S.¸et al, 2016

developed prioritization process by using

fuzzy logic in which they used analytical

hierarchy method and othe model combined to

perform optimization. Equivalence partitioning

focuses on partitioning the input space into a

small number of partitions agreeing to the

requirements (Raj Kumar, et al, 2018). BVA

focuses to test these bounding edges to

identify maximum errors writing the minimum

number of test cases (Strandberg, et al, 2016).

This method is preferred for projects where

there are plenty of equivalence class partitions

to test where each partition has varied

expected outputs.

In multi objective algorithms author discussed

about seeding strategies are used to solve test

case optimization. Greedy approach ((Jatana,

Nishtha, et al, 2021) developed for yielding

optimized test suite.

3. Methodology

Sequencing the test modules considering the

functional dependencies is crucial to plan

testing. It is very important for organizations

to sequence their test activities for effective

testing. This ensures optimized testing in terms

of test coverage, achieving maximum test

coverage with minimal test effort. Planning

this reduces cost of quality (COQ), ensuring

we are doing the right things which is required

for us to achieve with minimal effort. The goal

of testing is to ensure the overall solution, its

components and its assembly of components

meets the established functional and technical

requirements. A clear set of requirements from

the customer ensures the following benefits: It

helps ensure that QA covers all customer

expectations; it helps to develop quality

solutions. It enables to clarify questions related

to the requirements in the initial planning

stages. It helps to reduce defects, when

requirements are provided in the initial stages.

It also helps understand the scope of

requirements. In planning stage, the testing

strategy defines the major aspects of the test

effort and outlines the coverage to key

sponsors. The testing strategy fills in as a

contribution to the test methodologies and

plans for the phases of testing. The test

strategy is captured within the delivery

strategy composite created during Planning.

We use the testing strategy throughout the

analysis, design, and build stages as a starting

point for creating initial test approach

documents for specific test stages. For each

test stage, the test strategy provides: Scope,

high-level objectives, tasks, and

responsibilities, test design techniques to be

used, test types to be carried out, high-level

entry and exit criteria for verification,

validation, and test tasks. The Test Strategy

deliverable records the general technique for

testing the application, specialized

engineering, and preparing and execution

bolster. These deliverables are made to

characterize the test stages to be directed in the

undertaking. The test approach tends to every

6363 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

single significant part of the test stage. The

first step in any test stage is to develop a test

approach. Testing Metrics provides planned

rates for all testing metrics specified in the

Testing Overall Approach document.

Configuration Management includes details of

the configuration management and version

control process and tools that are used for code

migration and release. Test Environment

specifies logical and physical diagrams of the

proposed test environment. Test Tools

includes details of all test tools to be employed

for the test stage. Assumptions, Issues, and

Risks use tables to show all assumptions,

issues, and risks affecting the test stage.

Include the name and role of each person

involved with the test stage. Hazard is an issue

that could cause some misfortune or debilitate

the achievement of our task, however which

hasn't happened yet or may never occur by any

means. These potential issues may adversary

affect the cost, timetable, or specialized

accomplishment of the task, the nature of our

product items, or undertaking camaraderie. It

can run from cataclysmic (loss of a whole

framework; death toll or lasting incapacity) to

insignificant (no framework harm or damage).

The probability program blame will bring

about an effect on business. Usually, testing is

attempts to focus test activities on the

functional area with greatest amount of risk.

Some benefits of this include improving test

efficiency and effectiveness and improving the

quality of requirements. It likewise expands

test viability while possibly bringing about less

tests and diminishing expense. Hazard Based

Testing Approach organizes testing where

testing exercises center around the most

essential tests that will relieve the most

elevated measure of hazard. It is prescribed to

include the fitting partners in gatherings given

that they will close the test situations.

Accumulate all prerequisites simultaneously

(utilitarian) and obviously distinguish the out

of degree things. Functional and Non-

functional requirements are unique. Useful

prerequisites center around what the

application must do while the Non-utilitarian

necessities expresses the operational execution

criteria, for example, framework throughput

and reaction time. In design phase, we have

lots of black box test optimization techniques.

Error Guessing is an Experience-based testing

technique where the previous experience of a

tester is used to find the application defects.

The Tester will guess the errors in the

application and has no specific rules. In this

technique, the Testers will try guessing the

situations where the application will fail. For

example, errors like clicking on the Submit

button before entering the mandatory fields,

entering number in Name field etcetera. In this

technique, the previous experience of a tester

is used to find the application defects.

Ensuring Performance is very important task

in Software Engineering process [10].

Performance Engineering is a systematic

process by which the performance of an

application is ensured by planning and design,

Modeling and forecasting, Testing and tuning.

It helps clients to improve customer

satisfaction and to manage development costs

by building performance into applications as

they are being developed or by alleviating

performance problems in existing applications

[10]. Organizations striving for high

performance depend on optimal systems and

applications performance. Stage Containment

is a major underlying principle of the V-

Model. It ensures identifying the right defects

at the right stage ensuring cost, schedules,

timelines are all intact. The objective of stage

control is to recognize issues in the framework

amid advancement before they are passed to

the following stage. This helps incorporate

quality with the framework. The process of

determining the origin (originating stage) of a

defect is termed root cause analysis. This stage

containment process highlights problem stages

and can be used to continually improve the

testing process. In this way, Stage

Containment can also help fix the process that

originally caused the errors or the process that

should have prevented them from occurring.

Discovering issues or blunders in the stage

they begin/happen in is imperative since issues

turn out to be costlier and harder to settle later

in the undertaking life cycle. Advantages of

stage control incorporate: Less imperfections,

limited expenses and exertion for settling

issues. Therefore, by enforcing stage

containment, a project can minimize this cost

and reduce the number of residual problems in

the finished solution.

Fig 1 represents a project using stage

containment has a defect-finding pattern like

that shown in below:

M. Sangeetha 6364

© 2022 JPPW. All rights reserved

Figure 1: With Stage Containment.

Without stage containment, a project could see

a defect-finding pattern like the one shown

below:

Figure 2: Without Stage Containment

The above fig 2 shows how problems can

disrupt the accuracy of project plans, making

schedules more difficult to keep, and

increasing costs

There is no better embarrassment than

customer identifying defects at production

environment before project stakeholders do.

This will create a huge business loss, customer

trust, reputation etc. The example below fig.3

shows the worst case of stage containment

where most of the defects are identified at

production environment. The worst-case

scenario where analysis, design, testing defects

is all identified at production environment

Figure 3. Without Stage Containment-

worst case

Architecture Diagram

.

The following fig 4 shows the system

architecture of testing life cycle phases –

Planning & Designing which we are

considering for effective test sequencing.

 F

F ig.4. Architecture for Training and testing phase

The test design OATS optimization process is

as follows: Analyze the existing system and

understand whether combinatorial situations

exist, since OA strategies cannot be

implemented for any level of test optimization.

Try identifying factors and levels which acts

as a sole input for any strength of OA test

optimization. Apply combinatorial test

6365 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

optimizer to generate the optimized test

combinations. Any test optimization tool will

not exactly formulate the precise test

optimization matching set that any

project/client requires. So, we analyze the

outcome given by the combinatorial optimizer

and decide on the amendment factors. A

typical real-time project always has its own

top priorities on analyzing the factors and

levels. It can be the looked-for input from the

customer or end-user or from the project team

analyzing many superiority factors like risks,

budget, time etc. There is a provision to

provide the prioritized factors or levels or both

as a input and asking the tool to generate the

optimized combinations. Any test optimization

tool in fact is always a tool, not more

intellectual than an experienced human. There

can be one more needed test combinations that

either the tool might have omitted in the

combinatorial output or it doesn’t fall under

the pair-wise or triple-wise combination so

that the tool might keep away from

combination generation. Such combinations

can be added from the proven expertise and

inquire the tool to take account of the same in

the optimized combination. The objective of

test design phase includes: Producing an

application design pack for the solution,

Derive the application design from and ensure

the consistency of the design deliverables with

the application requirements, the use cases,

business rules, and other requirements-related

deliverables, ensure that the application design

contains enough information for the builds.

4. Implementation

Dependency Structure matrix Algorithm

Algorithm 1: Update Routing Table

Input: Modules

Output: Return Path

Public Function FindPath (ByVal dicModules)

Set value of dicModules to dicNewModule.

For Each intModule in dicModules

 If dependancy of intModule and

intStartModule is less

 than of intModule and intCurrentModule

Then

 Assign intModule to intCurrentModule

 End If

 Next

Add intCurrentModule to arrPath

Set flgPath as False

While flgPath as False

 For Each intModule In dicModules

 If dependency of intCurrentModule

and

 intModule is less than of 150 Then

 Add inModule to arrNextModule

 End If

 Next

 For Each intModule In

arrNextClosestModule

 If summation of dependency value of

 intCurrentModule & intModule

and intModule

 & intEndModule is less than

summation of

 dependency value of

intCurrentModule &

 intNextClosestModule and

distance between

 intNextClosestModule and

intEndPoint Then

 Assign intModule to

intNextClosestModule

 End If

 Next

Add intNextClosestModule to path

Remove intNextClosestModule

Assign intNextClosestModule to

intCurrentModule

If dependency of intCurrentModule

and

 intEndMdule is less than of 200

Then

 Set flgPath as True

 End If

End While

Return path

End Function

Algorithm 2: Get Dependency Value

between Modules

Input: Set First Module value as intModule1

and set Second module value as intModule2

Output: Dependency value between two

modules as double.

Find value difference between intModule2 and

intModule1.

Calculate the power value.

Return the square root of power value.

M. Sangeetha 6366

© 2022 JPPW. All rights reserved

Flow Chart:

Fig 5: Flow chart for update Routing Table

5. Results & Discussions

OUTPUTS FOR AS EARLY AS

POSSIBLE TEST SEQUENCING

(AEAP): BEST SEQUENCE

Cyclic Blocks:

This output indicates separately the list of

cyclic dependent modules and assigns a block

number for every block. The table 2 output

would be helpful in a realistic project where

we have “n” number of two-way dependent

modules which has to get treated exceptionally

equated to other hooked on modules. Cyclic

Blocks are outputs of modules that have

interdependency. DSM lists out the modules

which are cyclically dependent and assigns a

block number (reference number) and lists in

this cyclic block output. The list of all cyclic

blocks and the modules belonging to them is

displayed in the below output:

Table 1: List of Cyclic Block for AEAP

Leveling Table:

This table 3 output table is extremely helpful

identifying the number of levels in the project

and the modules aligned to the same level.

Number of levels indirectly indicates the

complexity of the project that enables the

testing team to plan effectively on how to

proceed with testing considering time and

budget constraints. This output defines the

seclusion of modules/cyclic blocks into

hierarchies, it defines the best sequence to be

followed and it also tells which modules can

be executed in parallel saving time and effort.

Leveling table outputs the modules according

to their levels of early sequencing. This

enables us to identify very easily “n” module

is in which level. It segregates the

modules/blocks into hierarchies. It suggests

the best and worst case sequence to be

followed. It also suggests the modules that can

be executed in parallel.

Table 2: Leveling Table for AEAP

As a best sequence among modules, we can

see modules tagged in level 1 can be tested

first; level 2 modules can be tested next and so

on. Also, we can see that modules tagged

under level 2, i.e., modules 2, 3, 4 and 5 can be

executed parallel .

OUTPUTS FOR AS LATE AS

POSSIBLE TEST SEQUENCING

(ALAP): WORST SEQUENCE

Leveling Table:

This table 3 output table is extremely helpful

identifying the number of levels in the project

and the modules aligned to the same level as

worst sequence. Number of levels indirectly

indicates the complexity of the project that

enables the testing team to plan effectively on

how to proceed with testing considering time

and budget constraints. This output defines the

seclusion of modules/cyclic blocks into

hierarchies, it defines the best sequence to be

6367 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

followed and it also tells which modules can

be executed in parallel saving time and effort.

Table 3: Leveling Table for ALAP

Table 3: Leveling Table for number of

levels

As a worst sequence among modules, we can

see modules tagged in level 1 can be tested

first; level 2 modules can be tested next and so

on. Also, we can see that modules tagged

under level 4, i.e.., modules 2, 4, 5 and 8 can

be executed parallel after carrying out testing

all other modules.

Partitioning Table:

This table 4 output table arranges the input

according to the leveling table and it provides

the relationship between module numbers and

levels to which the modules are tagged under

worst possible test sequence of modules. How

much we can relax between testing of all

modules is defined in “As late as possible

sequencing”. This ensures that we are within

quality, budget and time. This also helps for

proper risk management

Table 4: Partitioning Table for ALAP

Deep learning-random forest algorithm (dl-

rl) for black box test case selection

Features of DL-RL:

Increase the rate of fault identification during

the test design phase as early as possible. It is

based on training and testing phase of test case

model. A large set of test cases is manually

executed. Test case selection has proposed

with DL-RL algorithm to solve the problem of

TC selection with multiple criteria. The basic

deep learning algorithm starts its search

process with a random set of test data stored in

the management unit. Each test case represents

a candidate solution for the problem being

solved.

Steps involved in DL-RL:

There are mainly two operations - training

phase, and testing phase. The data i used to

perform test case prioritization is stored in a

data management system and increase the

accuracy rate by comparing the previous

algorithms. In training phase, a test expert

must select a training set for the DL algorithm.

Test case requires the expert to select a set of

positive test cases, i.e., test cases which are of

high importance, for the current version under

test. In testing phase, the deep learning

approach uses a static data, requirement for

test case and failures .

 Fig 6: Time to Compute Path

M. Sangeetha 6368

© 2022 JPPW. All rights reserved

Fig 7: Run time Comparison of Dijkstra’s

Algorithm

The objective of this technique is to ensure test

sequencing as early as possible in the test plan

stage itself on the basis of dependency

structure algorithm which will increase the

error detection rate drastically considering key

project constraints of budget, time in mind

comparing with the existing techniques.

Comparison analysis

By using DDPF (Deep diverse prototype

forest) model Table 5 shows the accuracy of

the proposed method and existing methods.

Multiple factor-based prioritization is based on

the factor that causes the fault occurs in the

test cases. But the accuracy of multiple factors

was not efficient to select the best test cases,

so the Paratoo algorithm has introduced with

weigh update function. The accuracy achieved

by multiple factors, Paratoo, hybrid, optimized

method was 86.54, 83.54, 89.45, 85.34, and

93.4.

Table 5. Accuracy rate of various

methods.

6. Conclusion

The proposed work analyze the various phase

of project and using application find the

shortest path between the node of modules. By

doing easily identify the best and worst case

sequence of running test cases and perform the

test case optimization. Also using deep

learning and fuzzy logic the proposed

technique increases the accuracy rate.

Implementing DDPF model proposed work

prove the decent raise in accuracy as well as

reduce the time complicity. In future this can

be extended by considering other factors.

References

[1].Strandberg, P.E., Sundmark, D., Afzal, W.,

Ostrand, T.J., Weyuker, E.J. (2016).

Experience report: automated system level

regression test prioritization using multiple

factors. In 27th IEEE International Symposium

on Software Reliability Engineering

(ISSRE’16).

[2].Strandberg, P.E., Sundmark, D., Afzal, W.,

Ostrand, T.J., Weyuker, E.J. (2016).

Experience report: automated system level

regression test prioritization using multiple

factors. In 27th IEEE International Symposium

on Software Reliability Engineering

(ISSRE’16).

[3].Wang, S., Ali, S., Yue, T., Bakkeli, Ø.,

Liaaen, M. (2016). Enhancing test case

prioritization in an industrial setting with

resource awareness and multi-objective search.

In Proceedings of the 38th International

Conference on Software Engineering, ICSE

2016, Austin, TX, USA, May 14-22, 2016 -

Companion Volume, ACM, (pp. 182–191).

[4].Annibale Panichella_, Fitsum Meshesha

Kifetewy, Paolo Tonellay _SnT ,”Automated

Test Case Generation as a Many-Objective

Optimisation Problem with Dynamic

Selection of the Targets”- DOI

10.1109/TSE.2017.2663435, IEEE

Transactions on Software Engineering.

[5].Marco Autili, Antonia Bertolino,

Guglielmo De Angelis, Davide Di Ruscio, and

Alessio Di Sandro ,“A Tool-Supported

Methodology for Validation and Refinement

of Early-Stage Domain Models-IEEE

transactions on software engineering, VOL.

42, NO. 1, January 2016.

6369 Journal of Positive School Psychology

© 2022 JPPW. All rights reserved

[6].Matthew B. Dwyer and David S.

Rosenblum,” Editorial: Journal-First

Publication for the Software Engineering

Community”, IEEE transactions on software

engineering, vol. 42, NO. 1, January 2016.

[7]. Sepehr Eghbali and Ladan Tahvildari ”

Test Case Prioritization Using Lexicographical

Ordering/IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 42, NO.

12, DECEMBER 2016.

[8]. Wang, S., Ali, S., Yue, T., Bakkeli, Ø.,

Liaaen, M. (2016). ‘Enhancing test case

prioritization in an industrial setting with

resource awareness and multi-objective

search’, ICSE 2016, pp. 182–191..

 [9].M.Sangeetha,S.Malathi,Test Suite

Sequencing Using Dependency Structure

Matrix”,”Advanced Research and

Engineering”March-18.

[10]].M.Sangeetha,S.Malathi Sequencing of

Modules and Prioritization of Test Cases using

Dependency Structure Matrix: Survey, IEEE

6th International Conference on smart

structures and systems ICSSS 2019.

[11].Daniel Flemström., Pasqualina Potena.,

Daniel undmark.,Wasif Afzal.,Markus Bohlin-

2018- Similarity-based prioritization of test

case automation.

[12].].M.Sangeetha,S.Malathi Identifying

AEAP ALAP Sequences For Optimization

Using Dependency Structures,

INTERNATIONAL JOURNAL OF

SCIENTIFIC & TECHNOLOGY

RESEARCH VOLUME 9, ISSUE 02,

FEBRUARY 2020.

