
Journal of Positive School Psychology http://journalppw.com
2024, Vol. 8, No. 4, 82-94

Detecting Islamophobic Hate Speech On Social Media

Using Semi-Supervised Graph Convolutional Networks

Abdessamade El Ghandour 1, Ismail Akharraz2

1,2 Mathematical and Informatics Engineering Laboratory, Ibnou Zohr University Agadir, Morocco

https://orcid.org/0009-0004-0875-5368

Abstract

Islamophobia hate speech is expressed with a generalized negative attitude and behavior toward Muslims and

Islam. Speaking out against Muslims has a detrimental effect on how people view Islam. Hate speech towards

Muslims has significantly increased on social media during the past few years. This nature of rhetoric

encourages violence and prejudice against the Muslim community as well as some violent Muslim reactions.

This paper introduces Text Graph Convolutional Networks (TextGCN) model for semi-supervised text

classification to identify Islamophobic content on social media. Leveraging a dataset of 1,617 annotated

tweets, we applied a semi-supervised approach to classify a larger corpus of 28,000 tweets. This model

captures intricate relationships between words, documents, and their interconnections within the text through

a heterogeneous graph structure. By using two convolutional layers on this graph, TextGCN achieves state-

of-the-art performance, surpassing existing methods with a test accuracy of 93.58% using BERT embeddings

and 91.38% using Word2Vec+Doc2Vec embeddings.

Keywords: Islamophobia, social media, TextGCN, Semi-Supervised

INTRODUCTION

Recent years have seen a significant increase in

government attention to the frequency,

consequences, and transmission of

Islamophobic hate speech on social media

especially in the West since September 11,

2001 (Christopher 2010). The word

"Islamophobia," formed by combining ’Islam’

with the suffix ’-phobia,’ signifies the fear of

Islam. According to Conway Runnymede Trust

(1997), it encapsulates the fear or hatred

directed towards Islam and consequently

extends to the fear or aversion towards most or

all Muslims. Awan and Zempi (2020) defined

Islamophobia as the fear, bias, and animosity

directed at Muslims or non-Muslims, resulting

in incitement, hostility, and intolerance. This

encompasses threats, harassment, abuse, and

intimidation in both online and offline spheres.

Rooted in institutional, ideological, political,

and religious hostility, it manifests as structural

and cultural racism targeting symbols

associated with being Muslim. Ahrari et al.

(2012) elucidated Islamophobia as the term

used to signify an irrational suspicion, fear, or

refusal of the Islamic faith and individuals who

identify as Muslim. In terms of text

classification, deep learning models have

shown progress and are frequently utilized,

although their performance isn’t always

sufficient when using small labeled datasets.

Due to the time-consuming nature of human

labeling and the potential need for domain

knowledge, the labeled dataset is extremely

sparse in many real-world situations. Due to

limited availability of labeled training data,

semi-supervised text classification offers a

Abdessamade El Ghandour 84

promising approach within the deep learning

paradigm. Maximizing the exploitation of

unlabeled data's structural and feature

characteristics is fundamental to achieving

optimal performance in this context.

The proposed methodology for detecting

Islamophobic hate speech on social media is

based on the following contributions:

1. Data Labeling: Labeling Islamophobic

hate speech is a complex and challenging

task due to the subtle and nuanced nature of

this. Identifying Islamophobic hate speech

often requires deep understanding of

cultural, religious, and social contexts.

Moreover, the evolving nature of language

and the emergence of new Islamophobic

hate speech expressions pose additional

difficulties. To label our extensive dataset,

we used a semi-supervised approach, and a

subset of 1617 annotated documents as a

foundation. This labeled dataset served as a

starting point for training a model to classify

the remaining unlabeled data.

2. TextGCN: TextGCN was chosen over

other semi-supervised methods due to its

ability to effectively capture the inherent

graph structure of text data. Unlike

traditional recurrent neural networks

(RNNs) (Salehinejad et al., 2017) and

convolutional neural networks (CNNs)

(Jacovi et al., 2018), TextGCN can model

long-range dependencies and complex

relationships between words and

documents. By representing text as a graph,

where nodes represent words and

documents, and edges represent their

relationships, TextGCN can effectively

learn from both labeled and unlabeled data.

To adapt TextGCN to the specific task of

Islamophobic hate speech detection, we

incorporated related features into the graph

construction process and fine-tuned the

model’s parameters using a labeled dataset.

3. Heterogeneous Graphs: The proposed

heterogeneous graph model incorporates

multiple types of nodes, including words

and documents, as well as different types of

edges representing various relationships

between these nodes. For instance, W2W

edges capture semantic and syntactic

similarities between words, while W2D

edges represent word

occurrences within documents. D2D edges,

on the other hand, indicate the similarity or

dissimilarity between documents based on

their content. By considering these diverse

relationships, our model can capture richer

semantic and

syntactic information compared to

traditional homogeneous graph models.

4. Edge Features: Edge features were

incorporated to provide additional

information about the relationships between

nodes in the graph. By encoding distance or

similarity metrics into the edge features, we

can enhance the model’s ability to

differentiate between important and less

important connections. For example, edges

connecting semantically related words can

be assigned higher weights, indicating a

stronger relationship. By incorporating edge

features, the model can learn more

informative representations and improve its

classification accuracy.

5. Model Performance: The proposed

model demonstrated superior performance

compared to state-of-the-art deep learning

models such as CNN and LSTM on the task

of Islamophobic hate speech detection. The

model achieved a high accuracy rate,

outperforming baseline models by a

significant margin. This improvement can

be attributed to the effectiveness of the

heterogeneous graph representation, the

incorporation of edge features, and the

utilization of semi-supervised learning.

85 Journal of Positive School Psychology

RELATED WORK

Islamophobia hate speech has become a

popular problem in many circles, offering a

challenge to people everywhere (Frieder et al.

2019). Studies on hate speech detection for

various target groups regarding gender, race,

and community have been more prevalent in

recent years. To recognize social maltreatment,

researchers have employed a variety of

classification approaches.

With the use of Support Vector Machines,

Davidson et al. (2017) applied a conventional

feature-based classification model that

integrates distributional word frequency-

inverse document frequency (TF-IDF) and

other linguistic variables (SVM). They applied

three labels: offensive, neither offensive nor

hate speech, and hate speech. The precision,

recall, and F1 score they report are all

impressive, at 0.91, 0.90, and 0.90 respectively.

As they point out, their algorithm does poorly

when it comes to hate speech, of which

approximately 40% are incorrectly labeled.

Their extremely unequal classifications (where

76% of the data falls under the category of

"offensive speech") are a major contributor to

their high F1 score. They only use one dataset

to train and test their classifier, which increases

the possibility of overfitting.

The paper "Detecting weak and strong

Islamophobic hate speech on social media" by

Vidgen and Yasseri (2020), is one of the first

works using AI techniques to detect

Islamophobic hate speech on social media.

Their study revolved around a Twitter dataset

obtained from far-right UK political parties,

comprising 1,341 tweets labeled as ’Not

Islamophobic,’ ’Weak Islamophobic,’ and

’Strong Islamophobia.’ The data underwent

annotation by three expert annotators in the

fields of UK politics and the study of prejudice.

Utilizing an SVM algorithm, they endeavored

to identify instances of Islamophobic hate

speech. The classifier demonstrated a

performance of 74% on the trained dataset and

83% on unseen data across ten-fold.

Khan and Phillips (2021) created a Twitter

dataset in English and Hindi using some

hashtags about Islamophobia. The data is

annotated by three annotators proficient:

’Islamophobic’, ’About Islam but not

Islamophobic’, and, ’Neither about Islam nor

Islamophobic’. They used GloVe word

embedding with the LSTM model and with the

CNN model to classify Islamophobic hate

speech. The performance obtained of classifiers

over ten-folds was 93% with the English dataset

and 92% with the translated Hindi dataset for

the LSTM model. 95% with the English dataset

and 87% with the translated Hindi dataset for

the CNN model.

Badruddin et al. (2022) generated a Twitter

dataset to identify Islamophobia sentiment

analysis using Twitter API and Islamophobia

keywords. They collected about 4339 tweets in

diverse languages (31 languages). SVM and

LSTM are used to classify the issue of

Islamophobia with an accuracy value of 60%

for SVM with Polynomial Kernel and 73% for

LSTM.

Aldreabi et al. (2023) assembled 2000

comments from Reddit to detect Islamophobia

using a list of keywords that contained positive,

negative, and neutral Islamic-related terms.

Two annotators labeled the comments based on

their propensity for Islamophobia assigning

binary labels of Hateful and non-Hateful. They

used LSTM and CNN as the classifiers and

BERT for word embeddings. BERT+CNN

achieved the highest performance, obtaining an

F1-Score of 92%.

Anwar et al. (2023) Prepared a framework to

detect Islamophobic content using NLP

Abdessamade El Ghandour 86

techniques. They extracted 55000 tweets using

Twitter API and Islamophobia keywords. The

dataset was labeled as ’Islamophobic’ and

’Non-Islamophobic’ by the voting. They

obtained a final dataset containing 5000 tweets.

The BERT and LSTM models are used as a

classifiers with a performance of 97% for

BERT and 93% for LSTM.

In this study, our primary focus is to detect

Islamophobic content on social media, taking

cues from prior research. Previous work on hate

speech detection, particularly in the context of

identifying Islamophobia, has demonstrated the

potential for crafting a classification system

using a graph-based approach. It is imperative

to develop a model rooted in this methodology

for the explicit purpose of detecting

Islamophobia, as far as we are aware, no prior

research has specifically focused on the

detection of Islamophobia using the graph

method.

Methods

• Data collection

While various datasets have been generated for

text sentiment analysis and hate speech

detection, no complete public dataset that is,

specific to Islamophobic hate speech exists to

our knowledge. Consequently, we collect a new

dataset comprising 28,000 tweets generated by

Twitter followers using some trending

Islamophobic hashtags like

#MuslimsUnderAttack, #Jihadi,

#rapethreatsofmuslimwomen

#TablighiJamaatVirus. We gathered data over a

3 to 4-month period, roughly between March

2022 and August 2022. The dataset is diverse,

encompassing a wide range of user information.

Our search didn’t prioritize metadata associated

with user identities; instead, we focused on text,

tweet likes, and timestamps during retrieval.

• Data annotation

The unlabeled nature of our dataset presents a

significant challenge. We used a semi-

supervised approach, involving the search for

limited labeled data, and subsequently

annotating our dataset using a TextGCN-based

model. We proposed an available labeled

dataset, CONAN, and filtered out their classes

with purely Islamophobic hate speech content.

This dataset contains 14,988 Islamophobic

documents (Chung et al. 2019). After removing

the duplicate documents, we obtained 856

Islamophobic documents. Afterward, to create

binary labels, we require non-Islamophobic

documents. Consequently, we generated a new

dataset comprising 4,337 tweets by utilizing the

Twitter API and keywords that contain Islamic-

related terms such as ’Muslims’ and ’Islam’.

After cleaning and pre-processing steps, the

data are fetched to the Valence Aware

Dictionary for sEntiment Reasoning (VADER)

(Clayton and Eric 2014), a sentiment analyzer

tool used for sentiment analysis of these tweets

to uncover the public’s sentiment towards

Islam, whether it is negative, positive, or

neutral (Figure 1).

Figure 1: The process steps of the

VADER sentiment analyze

87 Journal of Positive School Psychology

In this dataset, 1871 tweets are classed as

positive tweets, and others tweets are classed as

negative or neutral. To establish an evenly-

weighted dataset the number of positive tweets

is reduced through random sampling to 869

tweets. Table 1 represents the count of

documents for each label in the training dataset.

Table 1: Total count of documents for each

label.

• Data preprocessing

In a typical text classification framework,

preprocessing is one of the most important

components (Uysal et al., 2012). We remove

duplicates before proceeding because it is

typical on Twitter for people to copy-paste

different quotes and retweet anything. The

symbol "@" on Twitter allows users to include

usernames in their tweets. These are removed

from the dataset since they are of no use to our

analysis. Normalization is a method of

converting all tweets to lowercase letters such

that "Token" and "token" are not considered

two separate words. Hashtags, like usernames,

are not deemed to be of substantial significance

for our study and, as a result, are removed.

URLs and collecting terms (words used to filter

tweets in the first place, such as ’islam,’ and

’islams’) are next in line to be removed. After

that, numbers, punctuation, and special

characters (@,&,#, %, etc.) must be removed.

The dataset is then cleaned up by removing

terms with less than three characters (short

words), making feature extraction easier for the

study. Tokenization is a crucial step in the pre-

processing procedure. It is the process of

splitting text into tokens based on whitespaces

and saving each word as a separate token. We

use Gensim’s simple preprocess method to

accomplish this step. The next phase is

lemmatization and steaming, which are

required for many text-mining applications.

They consider the context before converting the

term to its basic form. Finally, we remove

stopwords with no analytic value, such as

articles, prepositions, and pronouns, such as ’a,’

’and,’ ’the,’ etc. The default list can be tweaked

and expanded to fit your needs. We’ve added a

few new words to the Natural Language

Toolkit’s predefined list (NLTK). Table 2

shows the dataset after the pre-processing.

Table 2: Total count of documents for each

label after pre-processing

• GCN-based Text Classification

The Graph Convolutional Network (GCN) is a

semi-supervised framework that combines

convolutional techniques with graph data

modeling (Kipf and Welling 2016a). It is a

multi-layer neural network that works directly

on a graph, inducing embedding vectors for

nodes based on their neighboring nodes’

attributes. With multiple GCN layers, it can

capture information about larger communities

within the graph. The focus of the discussion is

on GCN-based text classification. Figure 2

shown the architecture of typical graph-based

text classification models based on level corpus

(Mao et al. 2019) and document-level GCN text

classification models (He et al. 2019). These

models are preferred because they capture

global structural information, unlike document-

Islamophobi

c

Non-

Islamophobi

c

Dataset(1,72

5)

856 869

Islamophobi

c

Non-

Islamophobi

c

Dataset(1,61

7)

823 794

Abdessamade El Ghandour 88

level GCN models that focus only on local

information. The former models enable the

analysis of rich relational structures and the

preservation of the graph’s global structure.

Consider the graph G = (V; E; A), where

V(|V| = N) and E, respectively, are sets of

nodes and edges while A ∈ ℝN×N is the graph

adjacency matrix. For any v, each node is

assumed to be connected to itself, i.e., (v; v) ∈

E. Let X ∈ ℝN×M be a matrix holding all N

nodes and their features, with M being the

feature vectors’ dimension and each row xv ∈

ℝM being the feature vector for v. As illustrated

in Figure 2 , we construct a broad and

heterogeneous text graph that encompasses

both word and document nodes so that global

word co-occurrence may be explicitly

represented and graph convolution can be

easily adjusted. The number of nodes in the text

graph N is equal to the sum of the number of

documents (corpus size) and unique words

(vocabulary size) in a corpus.

Figure 2: Framework of TextGCN. Words

and documents are nodes in a single huge

network, with co-occurrence between words

and documents appearing as edges. Assume

that the tweet classification has only two

classes.

TextGCN (Mao et al. 2019) is a corpus-based

graph that takes all of the words and documents

in the corpus as graph nodes. Word occurrence

in documents (document-word edges) and word

co-occurrence across the corpus (word-word

edges) are used to create edges between nodes.

The point-wise mutual information (PMI)

value, represents the edge between each word

pair. The term frequency-inverse document

frequency (TF-IDF) of the word in the

document is the weight of the edge between a

document node and a word node. The Jaccard

similarity is used to determine the weight of the

edge between each document pair. The created

graph is fed into a s −layer GCN, s ∈

{0,1, . . . , S − 1}, as shown in equation 4, with

the S −layer node embeddings for both word

and document having the same size as the label

set and being given to a softmax classifier for

output (Equation 5). For training and

optimization, the cross-entropy loss is

computed over all labelled documents

(Equation 6).

In this paper, we typically utilized two input

embedding models to represent the node

features in GCN-based text classification:

1. Doc2Vec and Word2Vec: TextGCN

uses a Word2Vec (Corrado et al. 2013) for

word nodes and a Doc2Vec (Le and

Mikolov 2014) for document nodes to train

its word/node feature.

2. BERT: TextGCN handle the BERT as one

of the most often used contextual word

embeddings.

In natural language processing, token

representations can be created by combining

tokens, segment, and position embeddings. The

key distinction lies in how Word2Vec and

BERT handle word order and context.

Word2Vec produces context-independent

embeddings, assigning a single numeric vector

to each word. This method merges various

meanings of a word into one vector and doesn’t

consider word order during training. On the

89 Journal of Positive School Psychology

other hand, BERT generates context-sensitive

embeddings, allowing for multiple numeric

representations of the same word, contingent on

its context. BERT’s embeddings are context-

dependent, capturing a word’s meaning within

various contexts. BERT takes word order into

account by employing the Transformer model

with positional encodings to represent word

positions, making it a valuable tool for tasks

that require contextual understanding in natural

language processing.

To construct edges, we aim to comprehensively

analyze all possible co-occurring relationships

between every pair of node types. As shown in

Figure 3, we use D2D edges in addition to

W2W and D2W edges. To calculate the edge

weight between two documents nodes D2D, we

employ Jaccard Similarity.

Figure 3: Various edges construction in an

entire corpus-based graph with four

documents and four words.

The TF-IDF of the word in the document

defines the weight of the edge between a

document node and a word node D2W. To

calculate weights between two word nodes, we

use PMI, a popular measure for word

associations. In our preliminary experiments,

we discovered that using PMI yields superior

results than using word co-occurrence count.

The PMI value of a word pair (k, l) is calculated

as:

 PMI(k, l) = max (log
p(k, l)

p(k)p(l)
, 0) (1)

 p(k, l) =
#W(k, l)

#W
 (2)

 p(k) =
#W(k)

#W
 (3)

where #W(k) is the number of sliding windows

in a corpus that contain word k, #W (k, l) is the

number of sliding windows that contain both

word k and l, and #W is the total number of

sliding windows in the corpus.

The GCN learning algorithm utilizes the input

matrix L(0) = X, which comprises the initial

P0 −dimensional features of the N nodes (the

sum of the number of documents and the

number of unique words in the corpus) in V, and

executes layer propagation using the approach

in equation (4), which formulates the

propagation operation from layer s to the next

layer (s + 1) Where, s ∈ {0,1, . . . , S − 1}, Ã =

D−
1

2AD−
1

2 is the normalized symmetric

adjacency matrix and D is degree matrix of A

where Dii = ∑j Aij. The diagonal elements of A

are set to 1 because of self-loops. Ws ∈

ℝPs×Ps+1 is a weight matrix for the s layer and

ReLU(𝐱) = max(0; 𝐱) is an activation

function. Using Word2Vec and Doc2Vec or

BERT, the initial feature matrix of nodes is

L(1). For both word and document node

embeddings, we set the last layer output to be

the same size as the label set and apply a

softmax classifier to the output.

 L(s+1) = ReLU(ÃL(s)Ws) (4)

 Z = softmax(ÃL(S)WS) (5)

The loss function is defined in equation (6) as

the cross-entropy error over all labeled

Abdessamade El Ghandour 90

documents

 Loss = − ∑

d∈𝒴D

∑

F

j=1

YdjlnZdj (6)

Where 𝒴D is the collection of document indices

with labels, and F denotes the output feature

dimension, which is equal to the number of

classes (F = 2). The label indicator matrix is

denoted by the letter Y. Gradient descent can be

used to train the weight parameters Ws.

• Experiments

In this subsection, we provide an in-depth

discussion of the experimental setup and

parameter selection. The model is implemented

using Google Colab, which provides up to

12.68 GB of free RAM. The scikit-learn and

Pytorch deep learning frameworks serve as the

foundation for the proposed framework, which

is created and implemented in Python 3. We

divided the TextGCN experiments into 6 tasks

based on the models of node embeddings and

edges. For The training hyperparameters, we

used two layers in the textGCN training and

2e − 5 as the learning rate; 0.5 as the dropout

rate; 0 as the L2 loss weight; 100 as the

maximum number of epochs with the early

stopping of 10 epochs. We chose 200 for the

first convolutional layers embedding size and

20 for the window size. We also experimented

with various settings and found that making

minor adjustments did not significantly alter the

outcomes. As a validation set, we chose 10% of

the training set at random. We used an Adam

optimizer in the training of our model (Kingma

and Ba 2014). In Task-1 we are using only

D2W as edges and we calculated the TF-IDF

for determining the weight edges. Each word is

represented as a node with Word2Vec

embeddings, and each document is a node with

Doc2Vec embeddings. In Task-2, we maintain

D2W as edges, but we employ BERT

embeddings for words and documents, using a

dimension of 768 based on the "bert-base-

uncased" (for English-based) model (Cistac et

al. 2019). Task-3 incorporates D2W and W2W

as the edges, with Word2Vec embeddings for

words and Doc2Vec embeddings for

documents. We establish word relationships,

utilizing a window size of 20 for PMI

calculation in W2W edges. In Task-4, D2W and

W2W edges are employed, and BERT

embeddings are applied to words and

documents. Task-5 introduces D2W, W2W,

and D2D edges, with Word2Vec embeddings

for words and Doc2Vec embeddings for

documents. Weighted edges are constructed

using Jaccard similarity measures for D2D

edges, with a threshold of 0.2. Finally, Task-6

features D2W, W2W, and D2D edges (full

edges), with BERT embeddings used for both

words and documents. For each of the tasks

mentioned above, We feed the text graph into a

simple two-layer GCN. This choice is based on

the observation that deep GCNs tend to exhibit

suboptimal performance in multi-layer setups.

Graph convolution can be viewed as a process

of sharing information among neighboring

nodes, and if this process is iterated, it leads to

a convergence where the features of all nodes

become progressively more similar (Kipf and

Welling 2016b).

Results and Discussion

• Results:

The study’s results show that the model’s

performance is influenced by the choice of edge

construction and node embeddings. Table 3

displays the average test accuracy in a 10-fold

cross-validation setup for various edge

constructions and node embeddings.

Table 3: Test accuracy across different node

embeddings and edge constructions.

91 Journal of Positive School Psychology

 Word2Vec

+Doc2Vec

BERT

D2W

0.8885

0.8805

D2W+W2W

0.8253

0.8777

D2W+W2W

+ D2D

0.9138

0.9358

Overall, a graph constructed with only D2W

edges consistently performs worse than the full

edges. This suggests that D2W co-occurrence

alone does not convey enough global structural

information. When both W2W and D2D edges

are added (full edges), the model’s test

accuracy improves, indicating more structural

information is captured with the model. In this

case, it exhibits with the same performance as

Word2Vec+Doc2Vec and BERT node

embeddings. Where the test accuracy increases

with both node embeddings in the full edges.

This explains that add other edges construction,

more structural information has been captured

with the model. However, using D2W with

W2W decreases test accuracy to 82.53% with

Word2Vec+Doc2Vec embeddings and to

87.77% with BERT embeddings. Moreover,

using W2W edges alone is insufficient for

performance enhancement, indicating that a

heterogeneous graph involving words alone

cannot capture all information. Despite both

models being pre-trained, there’s about a 5%

difference in performance between

Word2Vec+Doc2Vec embeddings and BERT

embeddings. BERT embeddings are trained on

a larger dataset, but it is suggested that a smaller

dataset might perform better on pre-trained

embeddings due to the need for global

information.

Overall, on our dataset, the proposed model

performs noticeably better than the baseline

models, proving the viability of the TextGCN

for semi-supervised text classification. Table 4

shows the test accuracy of this baseline

compared to the TextGCN model.

Table 4: Test accuracy of various models.

Algorithm Accuracy

 TF-IDF + SVM 0.8209

 TF-IDF + LR 0.8456

 CNN (Word2Vect) 0.9012

 LSTM (Word2Vect) 0.8148

 BILSTM (Word2Vec) 0.8827

 TextGCN(Word2Vec

+Doc2Vec)

 0.9138

 TextGCN(BERT) 0.9358

With BERT embeddings or

Word2Vec+Doc2Vec embeddings, TextGCN

outperforms all baseline models on our dataset

and performs well, proving the usefulness of

the suggested method on short datasets. For a

more thorough performance analysis, we point

out that CNN with randomly initialized word

embeddings can outperform LSTM with

randomly initialized word embeddings on small

datasets. BILSTM performs significantly better

when pre-trained Word2Vec embeddings are

made available. CNN produces high outcomes

using trained Word2Vec embeddings on a

small text dataset. Similar to the TF-IDF + LR

model, shorter datasets improve performance.

Worst baselines are achieved with TF-IDF +

SVM, although the results on shorter datasets

are inferior to others. Despite having higher

accuracy than the previous baselines on our

dataset, TextGCN consistently outperforms

CNN. This illustrates the effectiveness of using

full-edge features to preserve rich information.

TextGCN with full-edge construction

consistently surpasses the baselines in terms of

performance. Notably, BERT excels when

Abdessamade El Ghandour 92

employed in full-edge construction, potentially

due to the significance of word order in

sentiment analysis and the advantage of

leveraging pre-trained general semantic

knowledge derived from extensive external text

data. However, TextGCN still outperforms

these pre-trained models across all six tasks,

despite not relying on external resources. This

underscores the potential benefits of self-

exploration within the corpus through the

utilization of diverse edge networks, even in the

absence of substantial external resources.

• Discussion:

The study delves into graph convolutional

network learning, aiming to leverage

convolution layers for gathering information

from nearby nodes and larger neighborhoods.

Through text classification evaluation, we

assessed the optimal range of neighbor

information for each node, discovering that

using two GCN layers for each node yields the

best performance. Figure 4 shows the test

accuracy of the two embedding models in the

full edges. This suggests that capturing two

levels of neighborhood nodes is ideal; beyond

this, the representation of nodes becomes less

effective. Comparing methods, BERT and

Word2Vec+Doc2Vec demonstrate more

consistent performance across evaluation

parameters. Despite limited labeled data in a

low-resource language dataset, the study finds

that utilizing two layers consistently performs

the best overall. Increasing the number of layers

shows steady performance between 2 and 5,

without a sudden drop in the two-node

embeddings.

Figure 4: The performance of the TextGCN

model with varying GCN hidden layer stacks

applied to the full edges construction and

two embedding models.

We evaluated multiple top-performing models

with various percentages of the training data to

assess the impact of the quantity of the labeled

data. Figure 5 shows test accuracies using our

training data at 10%, 20%, and 80% applied to

a full-edge model with BERT embeddings and

Word2Vec+Doc2Vec embeddings. We point

out that TextGCN can increase test accuracy

even with a small number of labeled

documents. For example, TextGCN achieves

test accuracy of 0.85 on BERT embeddings and

0.87 on Word2Vec+Doc2Vec embeddings with

only 20% training documents, as well as 0.80

with BERT embeddings and 0.71 with

Word2Vec+Doc2Vec embeddings using only

10% training documents.

Figure 5: Comparison of test accuracy using

various numbers of labeled documents in the

training set.

93 Journal of Positive School Psychology

These accuracies surpass certain baseline

models even when utilizing the complete set of

training documents. This implies that TextGCN

effectively spreads document label details

throughout the entire graph, indicating its

proficiency in this task. Moreover, it indicates

that our word document graph maintains

comprehensive global word co-occurrence

data, contributing to the model’s success.

Conclusion

The purpose of our work was to use the graph

method for heterogeneous graphs to develop a

classifier for detecting Islamophobic content on

social media. In this study, we collected about

28,000 tweets with Islamophobia hashtags and

introduced a dataset consisting of 1,725 labeled

documents. This dataset was employed to label

the remaining documents using TextGCN for

semi-supervised text classification. It fully

exploits both small amounts of labeled data and

huge amounts of unlabelled data through rich

node and edge information propagation. All

graph components are based on the provided

text corpus, and we provide several edge

features to effectively handle the

distance/closeness between words and

documents. By surpassing various state-of-the-

art on our semi-supervised text classification

dataset, TextGCN shows promising results in

full edges with the different node embeddings.

For semi-supervised text classification in the

future, we propose leveraging few-shot

learning with small data. It requires a small

amount of labeled data for each label the model

is expected to recognize. The objective is for

the model to generalize quickly and effectively

to new unseen data in the same categories. The

distant supervision can be used in this task as

another approach. It is a successful strategy to

generate weakly labeled training data for neural

language models.

References

1. Christopher Allen. Islamophobia and Its

Discontents. Verso Books, Brussels, 2007.

2. Awan and I. Zempi. A working definition

of islamophobia: written evidence

submission prepared for the united nations

special rapporteur on contemporary forms

of racism, racial discrimination, xenophobia

and related intolerance. 2018.

3. Iqbal Z. Gazzaz O. B. Khan, F. R. and S.

Ahrari. Global media image of islam and

muslims and the problematics of a response

strategy. Islamic studies, pages 5–25, 2012.

4. Yao H.-R. Yang E. Russell K. Goharian N.

MacAvaney, S. and O. Frieder. Hate speech

detection: Challenges and solutions. PloS

one, 14(8), 2019.

5. Warmsley D.-Macy M. Davidson, T. and I.

Weber. Automated hate speech detection

and the problem of offensive language,

2017. In Eleventh international aaai

conference on web and social media.

6. Z. Waseem and D. Hovy. Hateful symbols

or hateful people? predictive features for

hate speech detection on twitter, 2016. In

Proceedings of the NAACL Student

Abdessamade El Ghandour 94

Research Workshop. San Diego, California,

88–93.

7. C. Ali H. Mulki, H. Haddad and H.

Alshabani. L-hsab: A levantine twitter

dataset for hate speech and abusive

language, 2019. In Proceedings of the Third

Workshop on Abusive Language Online.

Florence, Italy, 111–118.

8. B. Vidgen and T. Yasseri. Detecting weak

and strong islamophobic hate speech on

social media. Journal of Information

Technology and Politics, 17(1):66–78,

2020.

9. Heena Khan and Joshua L. Phillips.

Language agnostic model: Detecting

islamophobic content on social media, 2021.

Paper presented at 2021 ACM Southeast

Conference (ACMSE 2021), April 15–17,

Virtual Event, USA. ACM, New York, 5

pages.

10. Badruddin B. Kurniawan, F. and P. A.

Wibawa. Identification of islamophobia

sentiment analysis on twitter using text

mining language detection. Journal of

Positive School Psychology, 6(5):8286–

8294, 2022.

11. Lee J. M. Aldreabi, E. and J. Blackburn.

Using deep learning to detect islamophobia

on reddit, 2023. In The International

FLAIRS Conference Proceedings, vol. 36.

12. Anwar M. Ali F. Mukhtar R. Jaleel, A. and

M. Farooq. Islamophobia content detection

using natural language processing. Journal

of Computing and Biomedical Informatics,

4(02):88–97, 2023.

13. S.S. Tekiroglu M. Guerini Y.L. Chung, E.

Kuzmenko. Conan – counter narratives

through nichesourcing: a multilingual

dataset of responses to fight online hate

speech. ACL, 78:2819–2829, 2019.

14. C. J. Hutto and E. Gilbert. Vader: A

parsimonious rule-based model for

sentiment analysis of social media text,

2014. Eighth international AAAI

conference on weblogs and social media.

Michigan: AAAI Press.

15. Gunal S. Ergin S. Uysal, A. K. and E. S.

Gunal. A novel framework for sms spam

filtering, 2012. In Proceedings of the IEEE

international symposium on innovations in

intelligent systems and applications.

Trabzon, Turkiye.

16. T. N. Kipf and M. Welling. Semisupervised

classification with graph convolutional

networks, 2017. Paper presented in ICLR.

17. C. Mao L. Yao and Y. Luo. Graph

convolutional networks for text

classification. Artificial Intelligence,

33(1):7370–7377, 2019.

18. J. Huang Y. Tang X. He M. Tu, G. Wang

and B. Zhou. Multi-hop reading

comprehension across multiple documents

by reasoning over heterogeneous graphs,

2019. In Proceedings of the 57th Annual

Meeting of the Association for

Computational Linguistics, pp. 2704–2713.

19. G. S. Corrado Tomas Mikolov, Kai Chen

and J. Dean. Efficient estimation of word

representations in vector space, 2013. In

International Conference on Learning

Representations.

