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Abstract 

Islamophobia hate speech is expressed with a generalized negative attitude and behavior toward Muslims and 

Islam. Speaking out against Muslims has a detrimental effect on how people view Islam. Hate speech towards 

Muslims has significantly increased on social media during the past few years. This nature of rhetoric 

encourages violence and prejudice against the Muslim community as well as some violent Muslim reactions. 

This paper introduces Text Graph Convolutional Networks (TextGCN) model for semi-supervised text 

classification to identify Islamophobic content on social media. Leveraging a dataset of 1,617 annotated 

tweets, we applied a semi-supervised approach to classify a larger corpus of 28,000 tweets. This model 

captures intricate relationships between words, documents, and their interconnections within the text through 

a heterogeneous graph structure. By using two convolutional layers on this graph, TextGCN achieves state-

of-the-art performance, surpassing existing methods with a test accuracy of 93.58% using BERT embeddings 

and 91.38% using Word2Vec+Doc2Vec embeddings. 
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INTRODUCTION 

Recent years have seen a significant increase in 

government attention to the frequency, 

consequences, and transmission of 

Islamophobic hate speech on social media 

especially in the West since September 11, 

2001 (Christopher 2010). The word 

"Islamophobia," formed by combining ’Islam’ 

with the suffix ’-phobia,’ signifies the fear of 

Islam. According to Conway Runnymede Trust 

(1997), it encapsulates the fear or hatred 

directed towards Islam and consequently 

extends to the fear or aversion towards most or 

all Muslims. Awan and Zempi (2020) defined 

Islamophobia as the fear, bias, and animosity 

directed at Muslims or non-Muslims, resulting 

in incitement, hostility, and intolerance. This 

encompasses threats, harassment, abuse, and 

intimidation in both online and offline spheres. 

Rooted in institutional, ideological, political, 

and religious hostility, it manifests as structural 

and cultural racism targeting symbols 

associated with being Muslim. Ahrari et al. 

(2012) elucidated Islamophobia as the term 

used to signify an irrational suspicion, fear, or 

refusal of the Islamic faith and individuals who 

identify as Muslim. In terms of text 

classification, deep learning models have 

shown progress and are frequently utilized, 

although their performance isn’t always 

sufficient when using small labeled datasets. 

Due to the time-consuming nature of human 

labeling and the potential need for domain 

knowledge, the labeled dataset is extremely 

sparse in many real-world situations.  Due to 

limited availability of labeled training data,  

semi-supervised text classification offers a 
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promising approach within the deep learning 

paradigm. Maximizing the   exploitation of 

unlabeled data's structural and feature 

characteristics is fundamental to achieving 

optimal performance in this context. 

 

The proposed methodology for detecting 

Islamophobic hate speech on social media is 

based on the following contributions:   

1. Data Labeling: Labeling Islamophobic 

hate speech is a complex and challenging 

task due to the subtle and nuanced nature of 

this. Identifying Islamophobic hate speech 

often requires deep understanding of 

cultural, religious, and social contexts. 

Moreover, the evolving nature of language 

and the emergence of new Islamophobic 

hate speech expressions pose additional 

difficulties. To label our extensive dataset, 

we used a semi-supervised approach, and a 

subset of 1617 annotated documents as a 

foundation. This labeled dataset served as a 

starting point for training a model to classify 

the remaining unlabeled data. 

2. TextGCN: TextGCN was chosen over 

other semi-supervised methods due to its 

ability to effectively capture the inherent 

graph structure of text data. Unlike 

traditional recurrent neural networks 

(RNNs) (Salehinejad et al., 2017) and 

convolutional neural networks (CNNs) 

(Jacovi et al., 2018), TextGCN can model 

long-range dependencies and complex 

relationships between words and 

documents. By representing text as a graph, 

where nodes represent words and 

documents, and edges represent their 

relationships, TextGCN can effectively 

learn from both labeled and unlabeled data. 

To adapt TextGCN to the specific task of 

Islamophobic hate speech detection, we 

incorporated related features into the graph 

construction process and fine-tuned the 

model’s parameters using a labeled dataset. 

3. Heterogeneous Graphs: The proposed 

heterogeneous graph model incorporates 

multiple types of nodes, including words 

and documents, as well as different types of 

edges representing various  relationships 

between these nodes. For instance, W2W 

edges capture semantic and syntactic 

similarities between words, while W2D 

edges represent word 

occurrences within documents. D2D edges, 

on the other hand, indicate the similarity or 

dissimilarity between documents based on 

their content. By considering these diverse 

relationships, our model can capture richer 

semantic and  

syntactic information compared to 

traditional homogeneous graph models. 

4. Edge Features: Edge features were 

incorporated to provide additional 

information about the relationships between 

nodes in the graph. By encoding distance or 

similarity metrics into the edge features, we 

can enhance the model’s ability to 

differentiate between important and less 

important connections. For example, edges 

connecting semantically related words can 

be assigned higher weights, indicating a 

stronger relationship. By incorporating edge 

features, the model can learn more 

informative representations and improve its 

classification accuracy. 

5. Model Performance: The proposed 

model demonstrated superior performance 

compared to state-of-the-art deep learning 

models such as CNN and LSTM on the task 

of Islamophobic hate speech detection. The 

model achieved a high accuracy rate, 

outperforming baseline models by a 

significant margin. This improvement can 

be attributed to the effectiveness of the 

heterogeneous graph representation, the 

incorporation of edge features, and the 

utilization of semi-supervised learning. 
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RELATED WORK 

Islamophobia hate speech has become a 

popular problem in many circles, offering a 

challenge to people everywhere (Frieder et al. 

2019). Studies on hate speech detection for 

various target groups regarding gender, race, 

and community have been more prevalent in 

recent years. To recognize social maltreatment, 

researchers have employed a variety of 

classification approaches. 

 

With the use of Support Vector Machines, 

Davidson et al. (2017) applied a conventional 

feature-based classification model that 

integrates distributional word frequency-

inverse document frequency (TF-IDF) and 

other linguistic variables (SVM). They applied 

three labels: offensive, neither offensive nor 

hate speech, and hate speech. The precision, 

recall, and F1 score they report are all 

impressive, at 0.91, 0.90, and 0.90 respectively. 

As they point out, their algorithm does poorly 

when it comes to hate speech, of which 

approximately 40% are incorrectly labeled. 

Their extremely unequal classifications (where 

76% of the data falls under the category of 

"offensive speech") are a major contributor to 

their high F1 score. They only use one dataset 

to train and test  their classifier, which increases 

the possibility of overfitting. 

 

The paper "Detecting weak and strong 

Islamophobic hate speech on social media" by 

Vidgen and Yasseri (2020), is one of the first 

works using AI techniques to detect 

Islamophobic hate speech on social media. 

Their study revolved around a Twitter dataset 

obtained from far-right UK political parties, 

comprising 1,341 tweets labeled as ’Not 

Islamophobic,’ ’Weak Islamophobic,’ and 

’Strong Islamophobia.’ The data underwent 

annotation by three expert annotators in the 

fields of UK politics and the study of prejudice. 

Utilizing an SVM algorithm, they endeavored 

to identify instances of Islamophobic hate 

speech. The classifier demonstrated a 

performance of 74% on the trained dataset and 

83% on unseen data across ten-fold. 

 

Khan and Phillips (2021) created a Twitter 

dataset in English and Hindi using some 

hashtags about Islamophobia. The data is 

annotated by three annotators proficient: 

’Islamophobic’, ’About Islam but not 

Islamophobic’, and, ’Neither about Islam nor 

Islamophobic’. They used GloVe word 

embedding with the LSTM model and with the 

CNN model to classify Islamophobic hate 

speech. The performance obtained of classifiers 

over ten-folds was 93% with the English dataset 

and 92% with the translated Hindi dataset for 

the LSTM model. 95% with the English dataset 

and 87% with the translated Hindi dataset for 

the CNN model. 

Badruddin et al. (2022) generated a Twitter 

dataset to identify Islamophobia sentiment 

analysis using Twitter API and Islamophobia 

keywords. They collected about 4339 tweets in 

diverse languages (31 languages). SVM and 

LSTM are used to classify the issue of 

Islamophobia with an accuracy value of 60% 

for SVM with Polynomial Kernel and 73% for 

LSTM. 

 

Aldreabi et al. (2023) assembled 2000 

comments from Reddit to detect Islamophobia 

using a list of keywords that contained positive, 

negative, and neutral Islamic-related terms. 

Two annotators labeled the comments based on 

their propensity for Islamophobia assigning 

binary labels of Hateful and non-Hateful. They 

used LSTM and CNN as the classifiers and 

BERT for word embeddings. BERT+CNN 

achieved the highest performance, obtaining an 

F1-Score of 92%. 

 

Anwar et al. (2023) Prepared a framework to 

detect Islamophobic content using NLP 
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techniques. They extracted 55000 tweets using 

Twitter API and Islamophobia keywords. The 

dataset was labeled as ’Islamophobic’ and 

’Non-Islamophobic’ by the voting. They 

obtained a final dataset containing 5000 tweets. 

The BERT and LSTM models are used as a 

classifiers with a performance of 97% for 

BERT and 93% for LSTM. 

 

In this study, our primary focus is to detect 

Islamophobic content on social media, taking 

cues from prior research. Previous work on hate 

speech detection, particularly in the context of 

identifying Islamophobia, has demonstrated the 

potential for crafting a classification system 

using a graph-based approach. It is imperative 

to develop a model rooted in this methodology 

for the explicit purpose of detecting 

Islamophobia, as far as we are aware, no prior 

research has specifically focused on the 

detection of Islamophobia using the graph 

method.  

Methods 

 

• Data collection 

While various datasets have been generated for 

text sentiment analysis and hate speech 

detection, no complete public dataset that is, 

specific to Islamophobic hate speech exists to 

our knowledge. Consequently, we collect a new 

dataset comprising 28,000 tweets generated by 

Twitter followers using some trending 

Islamophobic hashtags like 

#MuslimsUnderAttack, #Jihadi, 

#rapethreatsofmuslimwomen  

#TablighiJamaatVirus. We gathered data over a 

3 to 4-month period, roughly between March 

2022 and August 2022. The dataset is diverse, 

encompassing a wide range of user information. 

Our search didn’t prioritize metadata associated 

with user identities; instead, we focused on text, 

tweet likes, and timestamps during retrieval. 

 

• Data annotation 

The unlabeled nature of our dataset presents a 

significant challenge. We used a semi-

supervised approach, involving the search for 

limited labeled data, and subsequently 

annotating our dataset using a TextGCN-based 

model. We proposed an available labeled 

dataset, CONAN, and filtered out their classes 

with purely Islamophobic hate speech content. 

This dataset contains 14,988 Islamophobic 

documents (Chung et al. 2019). After removing 

the duplicate documents, we obtained 856 

Islamophobic documents. Afterward, to create 

binary labels, we require non-Islamophobic 

documents. Consequently, we generated a new 

dataset comprising 4,337 tweets by utilizing the 

Twitter API and keywords that contain Islamic-

related terms such as ’Muslims’ and ’Islam’. 

After cleaning and pre-processing steps, the 

data are fetched to the Valence Aware 

Dictionary for sEntiment Reasoning (VADER) 

(Clayton and Eric 2014), a sentiment analyzer 

tool used for sentiment analysis of these tweets 

to uncover the public’s sentiment towards 

Islam, whether it is negative, positive, or 

neutral (Figure 1). 

 

Figure 1: The process steps of the 

VADER sentiment analyze 
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In this dataset, 1871 tweets are classed as 

positive tweets, and others tweets are classed as 

negative or neutral. To establish an evenly-

weighted dataset the number of positive tweets 

is reduced through random sampling to 869 

tweets. Table 1 represents the count of 

documents for each label in the training dataset. 

 

Table 1: Total count of documents for each 

label. 

 

 

• Data preprocessing 

In a typical text classification framework, 

preprocessing is one of the most important 

components (Uysal et al., 2012). We remove 

duplicates before proceeding because it is 

typical on Twitter for people to copy-paste 

different quotes and retweet anything. The 

symbol "@" on Twitter allows users to include 

usernames in their tweets. These are removed 

from the dataset since they are of no use to our 

analysis. Normalization is a method of 

converting all tweets to lowercase letters such 

that "Token" and "token" are not considered 

two separate words. Hashtags, like usernames, 

are not deemed to be of substantial significance 

for our study and, as a result, are removed. 

URLs and collecting terms (words used to filter 

tweets in the first place, such as ’islam,’ and 

’islams’) are next in line to be removed. After 

that, numbers, punctuation, and special 

characters (@,&,#, %, etc.) must be removed. 

The dataset is then cleaned up by removing 

terms with less than three characters (short 

words), making feature extraction easier for the 

study. Tokenization is a crucial step in the pre-

processing procedure. It is the process of 

splitting text into tokens based on whitespaces 

and saving each word as a separate token. We 

use Gensim’s simple preprocess method to 

accomplish this step. The next phase is 

lemmatization and steaming, which are 

required for many text-mining applications. 

They consider the context before converting the 

term to its basic form. Finally, we remove 

stopwords with no analytic value, such as 

articles, prepositions, and pronouns, such as ’a,’ 

’and,’ ’the,’ etc. The default list can be tweaked 

and expanded to fit your needs. We’ve added a 

few new words to the Natural Language 

Toolkit’s predefined list (NLTK). Table 2 

shows the dataset after the pre-processing. 

 

Table 2: Total count of documents for each 

label after pre-processing 

 

 

• GCN-based Text Classification 

The Graph Convolutional Network (GCN) is a 

semi-supervised framework that combines 

convolutional techniques with graph data 

modeling (Kipf and Welling 2016a). It is a 

multi-layer neural network that works directly 

on a graph, inducing embedding vectors for 

nodes based on their neighboring nodes’ 

attributes. With multiple GCN layers, it can 

capture information about larger communities 

within the graph. The focus of the discussion is 

on GCN-based text classification. Figure 2 

shown the architecture of typical graph-based 

text classification models based on level corpus 

(Mao et al. 2019) and document-level GCN text 

classification models (He et al. 2019). These 

models are preferred because they capture 

global structural information, unlike document-

  

Islamophobi

c 

Non-

Islamophobi

c 

Dataset(1,72

5) 

856 869 

  

Islamophobi

c 

Non-

Islamophobi

c 

Dataset(1,61

7) 

823 794 
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level GCN models that focus only on local 

information. The former models enable the 

analysis of rich relational structures and the 

preservation of the graph’s global structure. 

 

Consider the graph G = (V; E; A), where 

V(|V| = N) and E, respectively, are sets of 

nodes and edges while A ∈ ℝN×N is the graph 

adjacency matrix. For any v, each node is 

assumed to be connected to itself, i.e., (v; v) ∈

E. Let X ∈ ℝN×M be a matrix holding all N 

nodes and their features, with M being the 

feature vectors’ dimension and each row xv ∈

ℝM being the feature vector for v. As illustrated 

in Figure 2 , we construct a broad and 

heterogeneous text graph that encompasses 

both word and document nodes so that global 

word co-occurrence may be explicitly 

represented and graph convolution can be 

easily adjusted. The number of nodes in the text 

graph N is equal to the sum of the number of 

documents (corpus size) and unique words 

(vocabulary size) in a corpus. 

 

Figure 2: Framework of TextGCN. Words 

and documents are nodes in a single huge 

network, with co-occurrence between words 

and documents appearing as edges. Assume 

that the tweet classification has only two 

classes. 

 

 

 

 

 

 

TextGCN (Mao et al. 2019) is a corpus-based 

graph that takes all of the words and documents 

in the corpus as graph nodes. Word occurrence 

in documents (document-word edges) and word 

co-occurrence across the corpus (word-word 

edges) are used to create edges between nodes. 

The point-wise mutual information (PMI) 

value, represents the edge between each word 

pair. The term frequency-inverse document 

frequency (TF-IDF) of the word in the 

document is the weight of the edge between a 

document node and a word node. The Jaccard 

similarity is used to determine the weight of the 

edge between each document pair. The created 

graph is fed into a s −layer GCN, s ∈

{0,1, . . . , S − 1}, as shown in equation 4, with 

the S −layer node embeddings for both word 

and document having the same size as the label 

set and being given to a softmax classifier for 

output (Equation 5). For training and 

optimization, the cross-entropy loss is 

computed over all labelled documents 

(Equation 6). 

In this paper, we typically utilized two input 

embedding models to represent the node 

features in GCN-based text classification: 

1. Doc2Vec and Word2Vec: TextGCN 

uses a Word2Vec (Corrado et al. 2013) for 

word nodes and a Doc2Vec (Le and 

Mikolov 2014) for document nodes to train 

its word/node feature. 

2. BERT: TextGCN handle the BERT as one 

of the most often used contextual word 

embeddings. 

In natural language processing, token 

representations can be created by combining 

tokens, segment, and position embeddings. The 

key distinction lies in how Word2Vec and 

BERT handle word order and context. 

Word2Vec produces context-independent 

embeddings, assigning a single numeric vector 

to each word. This method merges various 

meanings of a word into one vector and doesn’t 

consider word order during training. On the 
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other hand, BERT generates context-sensitive 

embeddings, allowing for multiple numeric 

representations of the same word, contingent on 

its context. BERT’s embeddings are context-

dependent, capturing a word’s meaning within 

various contexts. BERT takes word order into 

account by employing the Transformer model 

with positional encodings to represent word 

positions, making it a valuable tool for tasks 

that require contextual understanding in natural 

language processing. 

 

To construct edges, we aim to comprehensively 

analyze all possible co-occurring relationships 

between every pair of node types. As shown in 

Figure 3, we use D2D edges in addition to 

W2W and D2W edges. To calculate the edge 

weight between two documents nodes D2D, we 

employ Jaccard Similarity.    

 

Figure 3: Various edges construction in an 

entire corpus-based graph with four 

documents and four words. 

 

The TF-IDF of the word in the document 

defines the weight of the edge between a 

document node and a word node D2W. To 

calculate weights between two word nodes, we 

use PMI, a popular measure for word 

associations. In our preliminary experiments, 

we discovered that using PMI yields superior 

results than using word co-occurrence count. 

The PMI value of a word pair (k, l) is calculated 

as: 

 

 

    PMI(k, l) = max (log
p(k, l)

p(k)p(l)
, 0)        (1) 

 

            p(k, l) =
#W(k, l)

#W
                (2) 

 

             p(k) =
#W(k)

#W
                        (3) 

 

where #W(k) is the number of sliding windows 

in a corpus that contain word k, #W (k, l) is the 

number of sliding windows that contain both 

word k and l, and #W is the total number of 

sliding windows in the corpus. 

 

The GCN learning algorithm utilizes the input 

matrix L(0) = X, which comprises the initial 

P0 −dimensional features of the N nodes (the 

sum of the number of documents and the 

number of unique words in the corpus) in V, and 

executes layer propagation using the approach 

in equation (4), which formulates the 

propagation operation from layer s to the next 

layer (s + 1) Where, s ∈ {0,1, . . . , S − 1}, Ã =

D−
1

2AD−
1

2 is the normalized symmetric 

adjacency matrix and D is degree matrix of A 

where Dii = ∑j Aij. The diagonal elements of A 

are set to 1 because of self-loops. Ws ∈

ℝPs×Ps+1 is a weight matrix for the s layer and 

ReLU(𝐱) = max(0; 𝐱) is an activation 

function. Using Word2Vec and Doc2Vec or 

BERT, the initial feature matrix of nodes is 

L(1). For both word and document node 

embeddings, we set the last layer output to be 

the same size as the label set and apply a 

softmax classifier to the output. 

 

    L(s+1) = ReLU(ÃL(s)Ws)                (4) 

   

       Z = softmax(ÃL(S)WS)               (5)  

 

The loss function is defined in equation (6) as 

the cross-entropy error over all labeled 
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documents 

            Loss = − ∑

d∈𝒴D

∑

F

j=1

YdjlnZdj               (6) 

 

Where 𝒴D is the collection of document indices  

with labels, and F denotes the output feature 

dimension, which is equal to the number of 

classes (F = 2). The label indicator matrix is 

denoted by the letter Y. Gradient descent can be 

used to train the weight parameters Ws. 

 

• Experiments 

In this subsection, we provide an in-depth 

discussion of the experimental setup and 

parameter selection. The model is implemented 

using Google Colab, which provides up to 

12.68 GB of free RAM. The scikit-learn and 

Pytorch deep learning frameworks serve as the 

foundation for the proposed framework, which 

is created and implemented in Python 3. We 

divided the TextGCN experiments into 6 tasks 

based on the models of node embeddings and 

edges. For The training hyperparameters, we 

used two layers in the textGCN training and 

2e − 5 as the learning rate; 0.5 as the dropout 

rate; 0 as the L2 loss weight; 100 as the 

maximum number of epochs with the early 

stopping of 10 epochs. We chose 200 for the 

first convolutional layers embedding size and 

20 for the window size. We also experimented 

with various settings and found that making 

minor adjustments did not significantly alter the 

outcomes. As a validation set, we chose 10% of 

the training set at random. We used an Adam 

optimizer in the training of our model (Kingma 

and Ba 2014). In Task-1 we are using only 

D2W as edges and we calculated the TF-IDF 

for determining the weight edges. Each word is 

represented as a node with Word2Vec 

embeddings, and each document is a node with 

Doc2Vec embeddings. In Task-2, we maintain 

D2W as edges, but we employ BERT 

embeddings for words and documents, using a 

dimension of 768 based on the "bert-base-

uncased" (for English-based) model (Cistac et 

al. 2019). Task-3 incorporates D2W and W2W 

as the edges, with Word2Vec embeddings for 

words and Doc2Vec embeddings for 

documents. We establish word relationships, 

utilizing a window size of 20 for PMI 

calculation in W2W edges. In Task-4, D2W and 

W2W edges are employed, and BERT 

embeddings are applied to words and 

documents. Task-5 introduces D2W, W2W, 

and D2D edges, with Word2Vec embeddings 

for words and Doc2Vec embeddings for 

documents. Weighted edges are constructed 

using Jaccard similarity measures for D2D 

edges, with a threshold of 0.2. Finally, Task-6 

features D2W, W2W, and D2D edges (full 

edges), with BERT embeddings used for both 

words and documents. For each of the tasks 

mentioned above, We feed the text graph into a 

simple two-layer GCN. This choice is based on 

the observation that deep GCNs tend to exhibit 

suboptimal performance in multi-layer setups. 

Graph convolution can be viewed as a process 

of sharing information among neighboring 

nodes, and if this process is iterated, it leads to 

a convergence where the features of all nodes 

become progressively more similar (Kipf and 

Welling 2016b). 

Results and Discussion 

 

• Results:  

The study’s results show that the model’s 

performance is influenced by the choice of edge 

construction and node embeddings. Table 3 

displays the average test accuracy in a 10-fold 

cross-validation setup for various edge 

constructions and node embeddings.  

 

Table 3: Test accuracy across different node 

embeddings and edge constructions. 
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 Word2Vec 

+Doc2Vec  

BERT 

 

D2W 

 

0.8885 

  

0.8805 

 

D2W+W2W 

  

0.8253  

  

0.8777 

D2W+W2W 

+ D2D 

  

0.9138  

  

0.9358 

 

 

Overall, a graph constructed with only D2W 

edges consistently performs worse than the full 

edges. This suggests that D2W co-occurrence 

alone does not convey enough global structural 

information. When both W2W and D2D edges 

are added (full edges), the model’s test 

accuracy improves, indicating more structural 

information is captured with the model. In this 

case, it exhibits with the same performance as 

Word2Vec+Doc2Vec and BERT node 

embeddings. Where the test accuracy increases 

with both node embeddings in the full edges. 

This explains that add other edges construction, 

more structural information has been captured 

with the model. However, using D2W with 

W2W decreases test accuracy to 82.53% with 

Word2Vec+Doc2Vec embeddings and to 

87.77% with BERT embeddings. Moreover, 

using W2W edges alone is insufficient for 

performance enhancement, indicating that a 

heterogeneous graph involving words alone 

cannot capture all information. Despite both 

models being pre-trained, there’s about a 5% 

difference in performance between 

Word2Vec+Doc2Vec embeddings and BERT 

embeddings. BERT embeddings are trained on 

a larger dataset, but it is suggested that a smaller 

dataset might perform better on pre-trained 

embeddings due to the need for global 

information. 

Overall, on our dataset, the proposed model 

performs noticeably better than the baseline 

models, proving the viability of the TextGCN 

for semi-supervised text classification. Table 4 

shows the test accuracy of this baseline 

compared to the TextGCN model.  

 

Table 4: Test accuracy of various models. 

 

Algorithm Accuracy 

 TF-IDF + SVM   0.8209  

 TF-IDF + LR   0.8456  

 CNN (Word2Vect)   0.9012  

 LSTM (Word2Vect)   0.8148  

 BILSTM (Word2Vec)   0.8827  

 TextGCN(Word2Vec 

+Doc2Vec)  

 0.9138 

 TextGCN(BERT)   0.9358 

 

With BERT embeddings or 

Word2Vec+Doc2Vec embeddings, TextGCN 

outperforms all baseline models on our dataset 

and performs well, proving the usefulness of 

the suggested method on short datasets. For a 

more thorough performance analysis, we point 

out that CNN with randomly initialized word 

embeddings can outperform LSTM with 

randomly initialized word embeddings on small 

datasets. BILSTM performs significantly better 

when pre-trained Word2Vec embeddings are 

made available. CNN produces high outcomes 

using trained Word2Vec embeddings on a 

small text dataset. Similar to the TF-IDF + LR 

model, shorter datasets improve performance. 

Worst baselines are achieved with TF-IDF + 

SVM, although the results on shorter datasets 

are inferior to others. Despite having higher 

accuracy than the previous baselines on our 

dataset, TextGCN consistently outperforms 

CNN. This illustrates the effectiveness of using 

full-edge features to preserve rich information. 

 

TextGCN with full-edge construction 

consistently surpasses the baselines in terms of 

performance. Notably, BERT excels when 
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employed in full-edge construction, potentially 

due to the significance of word order in 

sentiment analysis and the advantage of 

leveraging pre-trained general semantic 

knowledge derived from extensive external text 

data. However, TextGCN still outperforms 

these pre-trained models across all six tasks, 

despite not relying on external resources. This 

underscores the potential benefits of self-

exploration within the corpus through the 

utilization of diverse edge networks, even in the 

absence of substantial external resources. 

 

• Discussion: 

The study delves into graph convolutional 

network learning, aiming to leverage 

convolution layers for gathering information 

from nearby nodes and larger neighborhoods. 

Through text classification evaluation, we 

assessed the optimal range of neighbor 

information for each node, discovering that 

using two GCN layers for each node yields the 

best performance. Figure 4 shows the test 

accuracy of the two embedding models in the 

full edges. This suggests that capturing two 

levels of neighborhood nodes is ideal; beyond 

this, the representation of nodes becomes less 

effective. Comparing methods, BERT and 

Word2Vec+Doc2Vec demonstrate more 

consistent performance across evaluation 

parameters. Despite limited labeled data in a 

low-resource language dataset, the study finds 

that utilizing two layers consistently performs 

the best overall. Increasing the number of layers 

shows steady performance between 2 and 5, 

without a sudden drop in the two-node 

embeddings. 

 

Figure 4: The performance of the TextGCN 

model with varying GCN hidden layer stacks 

applied to the full edges construction and 

two embedding models. 

 

 

 

We evaluated multiple top-performing models 

with various percentages of the training data to 

assess the impact of the quantity of the labeled 

data. Figure 5 shows test accuracies using our 

training data at 10%, 20%, and 80% applied to 

a full-edge model with BERT embeddings and 

Word2Vec+Doc2Vec embeddings. We point 

out that TextGCN can increase test accuracy 

even with a small number of labeled 

documents. For example, TextGCN achieves 

test accuracy of 0.85 on BERT embeddings and 

0.87 on Word2Vec+Doc2Vec embeddings with 

only 20% training documents, as well as 0.80 

with BERT embeddings and 0.71 with 

Word2Vec+Doc2Vec embeddings using only 

10% training documents. 

 

Figure 5: Comparison of test accuracy using 

various numbers of labeled documents in the 

training set. 

 



93  Journal of Positive School Psychology  

 

 

These accuracies surpass certain baseline 

models even when utilizing the complete set of 

training documents. This implies that TextGCN 

effectively spreads document label details 

throughout the entire graph, indicating its 

proficiency in this task. Moreover, it indicates 

that our word document graph maintains 

comprehensive global word co-occurrence 

data, contributing to the model’s success. 

Conclusion 

The purpose of our work was to use the graph 

method for heterogeneous graphs to develop a 

classifier for detecting Islamophobic content on 

social media. In this study, we collected about 

28,000 tweets with Islamophobia hashtags and 

introduced a dataset consisting of 1,725 labeled 

documents. This dataset was employed to label 

the remaining documents using TextGCN for 

semi-supervised text classification. It fully 

exploits both small amounts of labeled data and 

huge amounts of unlabelled data through rich 

node and edge information propagation. All 

graph components are based on the provided 

text corpus, and we provide several edge 

features to effectively handle the 

distance/closeness between words and 

documents. By surpassing various state-of-the-

art on our semi-supervised text classification 

dataset, TextGCN shows promising results in 

full edges with the different node embeddings. 

For semi-supervised text classification in the 

future, we propose leveraging few-shot 

learning with small data. It requires a small 

amount of labeled data for each label the model 

is expected to recognize. The objective is for 

the model to generalize quickly and effectively 

to new unseen data in the same categories. The 

distant supervision can be used in this task as 

another approach. It is a successful strategy to 

generate weakly labeled training data for neural 

language models. 
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