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Abstract:  

Problems related to agriculture are, in essence, stochastic because of the uncertain nature of their 

parameters. The uncertainty caused by factors such as climatic conditions on yield impacts many 

systems arising in this sector. Uncertainty and imperfect information involved therein are challenging 
decision-making, as decision-makers are led to make decisions before observing the realization of the 

random factors. 

Traditional approaches to deal with agricultural problems do not integrate risks and uncertainties 

involved therein, while it is relevant to efficient managerial decision-making to consider uncertainties 
and respond to opportunities and threats. Stochastic optimization has been a key to solving problems 

related to agriculture and enhancing productivity and efficiency in this field. It helps manage uncertainty 

and provides robust solutions. Stochastic optimization provides decision-makers with the ability to 
make optimal management decisions and helps to minimize the costs associated with decision-making 

under uncertainty. 

This paper focuses on stochastic programming and covers some of the theoretical foundations. It also 

focuses on recent advances in agriculture as an area where stochastic programming is applicable. 
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1 INTRODUCTION 

The agricultural sector plays a strategic role in 

the economic development of each country. It is 

of irrevocable economic importance and key for 
economic transformation and food security. The 

performance of the sector, combined with its 

interactions with other economic sectors, gives it 

a prominent place.  

The agricultural sector makes its contribution to 
economic development in several ways. It 

generates economic opportunities and delivers 

significant support to employment policy, 
especially in rural areas. It is also key to reducing 

poverty, particularly in developing countries. 

This field is subject to significant mathematical 

developments to consolidate its strategic 

vocation and ensure better management of 
financial resources, risks, and climate shocks. 

Several mathematical models helped to 

formalize inherent uncertainty to this sector, and 
over the years, various approaches to agricultural 

optimization under uncertainty were developed. 

This article attempts to present a brief review of 

the usage of stochastic programming in the 

agricultural sector. 

 

2 STOCHASTIC OPTIMIZATION 

Many concrete problems from different fields 

can be modeled using mathematical programs. 

Mathematical programming refers to 
mathematical models used to solve problems and 

make optimal decisions. It can seek to maximize 

or minimize an objective function, often subject 

to a set of constraints. 

More precisely, the formulation of an 

optimization problem involves:  

1. Selecting optimization variables 

2. Defining the objective function 

3. Identifying the set of constraints 

The general model can be represented as: 

min⁡{ 𝑓(𝑥) /𝑔(𝑥, 𝑎) ≥ 0}     (1.1) 
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Where 𝑓 is the objective function, 𝑥 is a decision 

vector, 𝑎 is a vector of model parameters, and 𝑔 

is the constraint mapping. 

Model parameters can be unknown or uncertain 
and may imply randomness. Historically, 

uncertainty has been considered in mathematical 

models for decision-making. Many approaches 
have been proposed to address this issue. One of 

the widely used approaches is stochastic 

programs, as they have proved their flexibility 
and usefulness in different areas of science. In 

fact, stochastic models rely on solid 

mathematical foundations, probability theory, 

and stochastic processes. 

Stochastic optimization is the mathematical 
framework to model decision-making under 

uncertainty. It refers to a collection of methods 

for minimizing or maximizing an objective 
function when randomness is present. 

Randomness usually enters the problem through 

the objective function and/or the constraint set.  

Stochastic optimization was first introduced by 

George B. Dantzig by considering cases that 
included uncertainty. Over the past few decades, 

this field has been an active area of research. 

With the increase of theoretical and algorithmic 
developments, stochastic programming has been 

applied to a wide variety of problems, including 

water resources planning and management, 
production planning, and financial problems. It 

plays an important role in the analysis, design, 

and performance of modern systems.  

An important number of optimization problems 

involving uncertainty occur if the constraints 𝑔 
depend on a stochastic parameter ξ, such as the 

system in (1.1) might be: 

{ 𝑓(𝑥) |⁡𝑔(𝑥, ξ) ≥ 0}      (1.2) 

Here, ξ is a k-dimensional random variable 

defined on some probability space (Ω, F, P). 

To deal with uncertainty and arrive at a relevant 

and implementable form of the constraints, the 

dependence of 𝑔 on specific outcomes of ξ has to 

be removed. The most prominent approaches to 

do so are: 

- the expected value approach 

- the approach by probabilistic constraints: 

 Joint chance constraints 

 Single chance constraints 

 

2.1 Expected value approach 

The expected value approach is a common 

solution procedure to solve stochastic problems. 

It refers to an optimization method that uses the 
expected value of the random variables. Thus, to 

solve the stochastic problem, the easiest and 

simplest approach is to replace the random 

variable ξ with its expected value 𝐸(ξ), and solve 

the obtained deterministic problem. The system 

(1.2) is replaced by: 

min⁡{ 𝑓(𝑥) |𝑔(𝑥, 𝐸(ξ)) ≥ 0}     (1.3) 

The problem (1.3) is an inequality system 

depending only on the design 𝑥. Here, the 

expectation operator acts as an integrator over⁡ξ. 

The main issue with this approach is that 

sometimes the solution can be inexact or even 

non-implementable. 

It is also possible to use the expected value of the 

constraints 𝐸(𝑔(𝑥, ξ)). The stochastic 

optimization problem becomes: 

 

min⁡{ 𝑓(𝑥) |𝐸(𝑔(𝑥, ξ)) ≥ 0}     (1.4) 

The systems (1.3) and (1.4) coincide in case that 

𝑔 depends linearly on ξ. 

 

2.2 Optimization with probabilistic 

constraints 

Often, a design decision 𝑥 has to be implemented 

before the parameter ξ is observed. In doing so, 

it is difficult to find a decision that would 
definitively exclude subsequent constraints 

violations caused by unexpected random effects 

or unexpected extreme events. The choice of 𝑥 

does not guarantee that⁡𝑔(𝑥, ξ) ≥ 0 for all 

possible realizations of the parameter ξ. 

Stochastic optimization problems with 

probabilistic constraints, also called stochastic 

optimization problems with chance constraints, 

help to deal with uncertainties and obtain a 

feasible optimal solution. It is often used in case 

uncertainties are assumed to follow a certain 

probability distribution.  

 

min⁡
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Probabilistic constraints require that the 

probability to remain feasible is above a 

reliability level 𝑝ϵ[0,1]. The reliability level is 

fixed by the decision-maker in order to model the 

safety requirements. 

This approach is one of the most prominent 

approaches used for dealing with optimization 

problems under uncertainty. 

The problem can be represented as: 

min⁡{ 𝑓(𝑥) |𝑃(𝑔(𝑥, ξ) ≥ 0) ≥ 𝑝} 𝑝 ∈ [0,1]   
(1.5) 

Where: 

 𝑥 is a decision vector; 

 𝑃 is the probability measure  

 ξ is the random vector  

 𝑝𝜖[0,1] is the prescribed probability or the 

reliability level. The decision maker prescribes it 

as a problem parameter.  

Higher values of the prescribed probability p lead 

to a smaller set of feasible decisions. 

When dealing with a random inequality system 

(𝑔𝑖

 Joint chance constraints 

 Single chance constraints. 

The solution of the chance-constrained problem 

(1.5) is guaranteed to be a feasible solution to the 

original problem (1.2). 

The chance constraints approach is not too 
expensive and provides robust solutions. This 

approach is, however, often difficult to solve. 

For a standard reference on probabilistic 

constraints, it is advisable to refer to the 

monograph by Prékopa (1995). 

2.2.1 Joint chance constraint 

To take into consideration the uncertainty, the 

problem can be formulated as: 

 s. t.⁡⁡⁡⁡⁡⁡𝑃(𝑔𝑖(𝑥, ξ) ≥ 0, (⁡𝑖 = 1,… , 𝑛)) ≥ 𝑝 

The constraint in (1.6) is a joint chance constraint 

as it requires reliability in the output feasible 
region as a whole. The constraints must be 

maintained at the prescribed level of probability 

p. It is appropriate to use joint chance constraint 

in a context where it is important to satisfy all 
constraints simultaneously. In doing so, a 

decision 𝑥 would be considered feasible if and 

only if the random inequality 𝑔𝑖(𝑥, ξ) ≥ 0 is 

satisfied at least with a reliability level 𝑝ϵ[0,1]. 
The prescribed probability 𝑝 is typically chosen 

close to one. This approach leads to optimal 

solutions but involves higher costs. 

2.2.2 Individual chance constraints 

Individual probabilistic constraints approach 
calls for reliability in the individual output 

feasible region. Here, each component of the 

random inequality system is individually turned 

into a probabilistic constraint. 

An optimization problem with single chance 

constraints has the typical form: 

s. t.⁡⁡⁡⁡⁡𝑃(𝑔𝑖(𝑥, ξ) ≥ 0) ≥ 𝑝𝑖

probabilistic constraints, especially in the case 

where the component 𝑔𝑖(𝑥, ξ) is separable with 

respect to ξ. In fact, it would be easy to convert 

these constraints into explicit ones via quantiles. 

Furthermore, individual probabilistic constraints 

guarantee that the probability of constraints 
violation is low at each fixed time. However, 

over the whole time interval violation may be 

likely. 

Moreover, it is easy to demonstrate that: 

 If  𝑥 is feasible for (1.6) then 𝑥 is feasible 

for (1.7) too provided that 𝑝𝑖 = 𝑝⁡⁡⁡⁡∀𝑖 
 If  𝑥 is feasible for (1.7) then 𝑥 is feasible 

for (1.6) too provided that: 

               ∑ 𝑝𝑖 ≥ 𝑝 + 𝑛 − 1𝑛
𝑖=1  

                                      Or 

            𝑝𝑖 = 𝑝̃⁡⁡⁡∀𝑖        and        𝑝̃ ≥
𝑝+𝑛−1

𝑛
 

(𝑥, ξ) ≥ 0⁡⁡⁡⁡⁡𝑖 = (1, … , 𝑛)),  two options 

for generating chance constraints are possible: 

min⁡⁡ 𝑓(𝑥) (1.6)  

min⁡⁡ 𝑓(𝑥)  (1.7)  
                                                                             

⁡⁡⁡⁡(⁡𝑖 = 1,… , 𝑛) 

 

It is much easier to deal with individual 
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3 APPLICATIONS OF STOCHASTIC 

OPTIMIZATION IN AGRICULTURE 

Agriculture is subject to uncertainty and risk. It 
is driven by uncontrollable factors like climate 

conditions, pests, diseases, weeds, and variability 

of prices. These factors affect farmland 
management and imply yield uncertainty. Thus, 

it is relevant to managerial decision-making to 

consider uncertainties and respond to 

opportunities and threats. The decision-maker 
faces uncertainty and imperfect information 

when making almost all management decisions 

in this dynamic environment including 
investment, plan planting, irrigation, and harvest 

scheduling. 

A growing number of studies have highlighted 

the importance of managing uncertainty in 

driving agriculture dynamics and productivity. 
Mathematical programming applications to 

consider randomness in agricultural activity are 

constantly growing including stochastic 
programming. Linker (2021) claims that 

«stochastic approaches are suitable for 

developing risk-adverse management strategies 
which are conceptually much closer to farmers 

reasoning, and are therefore more likely to be of 

practical interest». Furthermore, stochastic 

programming models are widely used for 
agricultural planning problems. These models 

are useful and applicable to real-world cases and 

provide robust solutions. A range of agricultural 
applications using stochastic programming 

includes irrigation scheduling and harvest 

planning. 

3.1 Agricultural water management 

Water is an essential input for agricultural 

production, and water management is crucial to 
respond to the water requirements of different 

crops. Water management is challenged by 

various factors as socio-economic pressures 
(prices, changing economic conditions, etc) and 

climate change risks (rainfall, droughts, heat 

waves, etc).  

Irrigation scheduling is a key component in 

agricultural water management schemes. It is a 
management decision taken under numerous 

uncertainties. Optimal water allocation is 

challenging as it is «generally a decision taken 
with uncertainty regarding seasonal crop needs 

(unknown yield, precipitation, and other 

environmental factors)» (Berbel and Expósito, 
2021). In this context, optimizing water resource 

management is essential to ensure sustainable 

and productive agriculture. The decision criteria 
aim to offer optimized irrigation schedules and to 

maximize profit. 

During the last decades, many studies applying 

stochastic programming to agricultural water 

management and planning problems have been 
conducted.  Afshar et al., (1991) used a chance-

constrained optimization model to study 

reservoir planning for irrigation district. The 
model considers the eventual interactions 

existing between design and operation 

parameters (capacity of reservoir, area of land to 
be developed and planted, etc.). The model 

provides «the optimum extent of the land 

development for irrigation, cropping pattern, 

reservoir and canal capacities, as well as the 
necessary linear decision rule operational 

parameters». The model also brings out the 

importance of incorporating the reservoir cost in 

the model. 

Huang (1998) developed an inexact-stochastic 

water management model based on an inexact 

chance-constrained programming method. The 

solutions provided by the model can be useful in 
providing insight regarding tradeoffs between 

economic and environmental objectives. 

Many other studies have used two-stage 

stochastic programming (TSP) to optimize water 
management in the agricultural sector. The TSP 

is suitable for the analysis of medium- to long-

term planning problems in which scenario 

decomposition resolution is required. The 
advantage of this technique is the concept of 

recourse, which provides the ability to take 

corrective actions. Two-stage stochastic program 
models make an initial decision in the first-stage 

based on uncertain future events. Once these 

uncertainties are resolved, a recourse or 

corrective action is taken.  

Guo et al., (2009) proposed a two-stage fuzzy 

chance-constrained programming to optimize the 

management of water resources under dual 

uncertainties. This approach integrates a TSP and 
a fuzzy chance-constrained programming within 

a general framework. The model allows the 

analysis of many policy scenarios and provides 
reasonable solutions that help obtain the desired 

water allocation patterns.  

Huang et al., (2010) suggest a simulation-based 

optimization method for planning water 

resources management systems under 
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uncertainty. This method allows incorporating 

uncertainties expressed as probability density 
functions and discrete intervals into the 

optimization framework. The obtained solutions 

are reasonable and can be useful in generating 

adequate policies for supporting water 
management with maximized gains and 

minimized system-failure risk. 

Lu et al., (2016) presented «a credibility-based 

chance-constrained optimization model for 
integrated agricultural and water resources 

management».  Authors attempted to address 

parameter uncertainty by using the concept of 
credibility. The model represents uncertainties as 

fuzzy sets and provides a credibility level that 

indicates the confidence level of the obtained 

optimal management strategies. 

Zhang et al., (2020) proposed a multi-objective 
chance-constrained programming approach for 

planning problems with uncertain weights. This 

approach would help to optimize economic 
profits and ecological benefits of the agricultural 

system over the planning horizon. The main 

contribution of this method is that it tackles 

uncertain objective weights and random 
parameters. To demonstrate the applicability of 

their model, the authors applied it to a case study 

of agricultural water management in northwest 
China. Results indicate that the proposed method 

provides robust solutions. 

Zhang et al., (2021) formulated in their paper 

entitled «Irrigation water resources management 

under uncertainty: An interval nonlinear double-
sided fuzzy chance-constrained programming 

approach» an approach that optimizes irrigation 

water allocation under complexity and 
uncertainty. The proposed approach combines 

double-sided fuzzy chance-constrained 

programming and inexact quadratic 
programming within a general optimization 

framework. It provides solutions that are useful 

for a better management of irrigation water in 

irrigated agricultural areas. 

3.2 Optimization tools for harvesting 

Harvesting is an important and complex 
operation for producers. It requires route 

planning that is subject to changes related to 

spatial crop yield and scheduling with support 
vehicles. Inefficient routing leads to negative 

impacts as increased labor cost, increased 

operation time and increased risk of final product 

quality degradation. It negatively affects the crop 

yield, hence the profitability for producers. 

Timely and efficient harvest processes are crucial 
to preserve crop yield and quality, and minimize 

labor and machine maintenance costs. 

Z. Jiao et al., (2005) focused on their paper on 

optimizing the harvest schedule to maximize 

gain in sugar content of cane. The harvesting 
process is better carried out when the likely sugar 

yields are at the season's peak. Unfortunately, 

this is not possible due to the limited capacities 
of harvesting. The authors used a statistical 

model and a linear programming model to obtain 

the best harvest scheduling, and hence to 

maximize the total sugar content in the sugar 
canes in a harvest season. The developed 

technique was applied to a real case, and the 

results showed potential gains in profitability. 

M. Varas et al., (2020) proposed a model that 
seeks to maximize the quality of the harvested 

grapes and minimize the total operational costs 

of the harvest operation while considering 
several operational constraints such as the 

number of workers or machinery. To efficiently 

organize the process of harvesting, the authors 

formulated a multi-objective mixed-integer 
linear programming model and developed a 

negotiation protocol that can help decision-

makers find a final harvest schedule. 

Elbio L. Avanzini et al., (2021) considered 
operations planning to organize the process of 

harvesting grapes under uncertainty in weather 

conditions. Weather uncertainty affects the 

quality of grapes and thus their economic value. 
It is modeled following a Markov Chain 

approach. In this work, the authors compared an 

expected value with a multistage stochastic 
optimization programming for grapes harvesting 

planning operations. Results of the study indicate 

that results provided by the multi-stage approach 
are better than those provided by the expected 

value approach, especially under high 

uncertainty and high grape quality scenarios. 

P.He et al., (2021) suggest optimizing harvesting 

and transportation simultaneously to reduce the 
total operational costs. The study focuses on 

wheat harvesting and transportation in 

fragmental farmlands. 

First, the wheat should be harvested during the 
harvest season, and then the grains need to be 

transferred to the depot. The process brings out 
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the interest and the importance of 

synchronization between harvesting and 
transportation. A joint optimization framework is 

employed to optimize jointly wheat harvesting 

and transportation problem. It is composed of 

vehicle routing problems with multiple trips and 
assignment problems. Furthermore, an effective 

hybrid algorithm is used to solve this complex 

problem and find an optimal solution. The results 
indicate that the model and algorithm are an 

effective approach to help farmers reduce 

operational costs. 

 

4 CONCLUSION 

Stochastic optimization deals with a class of 
optimization models that involve significant 

uncertainty. It belongs to the major approaches 

for dealing with uncertain parameters in 

optimization problems.  

Data uncertainty abounds in many real-world 
optimization models. In the agricultural field, 

randomness is prevalent due to many parameters. 

For example, investment decisions in agriculture 
are implemented before many factors, such as 

weather, can be observed and before the demand 

for agricultural products is known. Such 

uncertainties further amplify the complexity of 
problems related to this field. Stochastic 

programming methods have been widely used to 

deal with uncertainties inherent to the conduct of 
agricultural operations and to provide assistance 

in decision-making. For instance, they can be 

used to optimize farmland management, 
irrigation scheduling, harvesting, and many other 

agriculture-related operations.  

Stochastic optimization helps deal with the 

uncertainty inherent to agricultural operations 

and generates optimal management strategies to 

carry out these operations. 
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