
Journal of Positive School Psychology http://journalppw.com  

2023, Vol. 7, No. 2, 474-481 

 

Analytical Solutions Of Some Special Nonlinear Partial 

Differential Equations Using Aboodh-Adomian Decomposition 

Method 
 

A. Almardy*2, M.Belkhamsa 2 ,R. A. Farah1,2, H. Saadouli 2 , M. A. Alkeer 2, M. A. Mohammed 2 

and, A. K. Osman 2 

 
1Department of Mathematics, Faculty of Science &Technology, Omdurman Islamic University, Khartoum, Sudan 
2Department of Management Information Systems and Production Management, College of Business and Economics, 

Qassim University, P.O.Box: 6640, Buraidah 51452, Saudi Arabia 

*i.Abdallah@qu.edu.sa 

 

 

ABSTRACT 

We apply the Aboodh-Adomian Decomposition Method (AADM) in this study to solve nonlinear Benjamin-Bona-

Mahony (BBM) and Fisher's partial differential equations (PDE). This method, being an integral transform, is a 

hybrid of two well-known and efficient methods: the Aboodh transform and the Adomian decomposition method. 

The method is demonstrated by solving two special cases of the BBM Equation and one special case of Fisher's 

partial differential equation. Because of its high convergence rate in approximating exact solutions, this approach 

is very dependable. The method can also produce numerical solutions without the usage of restrictive assumptions 

or the discretization typical of numerical methods; making it free of round-off errors. The Aboodh-Adomian 

Decomposition method employs a straightforward computation that leads to effectiveness. The efficiency of 

AADM is demonstrated in the significant reduction of number of numerical computations. The effectiveness and 

efficiency of EADM account for its broad application, particularly for higher order PDEs. 

Keywords: Aboodh Transform, Adomian Polynomials, PDEs, Analytical Solutions, Benjamin-Bona-Mahony 

Equation, Fisher’s Equation 

INTRODUCTION 

Nonlinear differential equations are incredibly 

essential to humans since most physical phenomena 

are nonlinear in nature and are modelled by these 

equations. In this regard, partial differential 

equations (PDEs) are in particular, fundamental. 

Unfortunately, analytical techniques cannot be used 

to solve the majority of nonlinear problems. In 

addition, to solve nonlinear problems, standard 

numerical methods require perturbation, 

discretization, linearization, or transformation. 

However, Adomian (1994) established that the 

Adomian decomposition method is free of such steps 

as are involved in standard numerical methods and is 

thus widely used in the literature. Several researchers 

have made significant efforts and implemented 

diverse methods for solving nonlinear PDEs over the 

last few decades. Recently Ali et al., (2018) applied 

the Laplace Adomian decomposition method in 

finding the approximate solutions for nonlinear 

general fisher’s equation. In a similar vein, we 

reference the works of (Khuri, 2001; Wazwaz, 2010; 

Wazwaz and Mehanna, 2010). 

Another important method that has received little 

attention is the Aboodh-Adomian decomposition 

method (AADM). It was introduced by Ige, et al., 

(2022). It is a combination of the Aboodh transform 

and the Adomian decomposition method, two well-

known and efficient methods. It is possible to obtain 

numerical solutions using this method without the 

use of restrictive assumptions or discretization 
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general fisher’s equation. In a similar vein, we 

reference the works of (Khuri, 2001; Wazwaz, 2010; 

Wazwaz and Mehanna, 2010). 

making it free of round-off errors. A solution in the 

form of a finite series is also achieved using this 

method, and it has the highest and fastest rate of 

convergence. In this paper we apply EADM to obtain 

the analytical solution of some special nonlinear 

partial differential equations: The Benjamin-Bona-

Mahony (BBM) Equations and Fisher’s Equations. 

The Benjamin-Bona-Mahony (BBM) Equations 

The partial differential equation Benjamin–Bona–

Mahony (BBM), commonly known as the 

regularized long-Wave equation (RLWE), was 

introduced by Benjamin et al. (1972). (See also 

Muhammad et al., 2019). 

𝑈𝑡+𝑈𝑥+𝑈𝑈𝑥−𝑈𝑥𝑥𝑡 = 0,       (𝑥,0) = 𝑓(𝑥)       (1.1) 

Benjamin, Bona, and Mahony explored this equation 

in 1972 as an improvement on the Korteweg de Vries 

equation (KdV equation) for modeling long surface 

gravity waves of small amplitude traveling in 1+1 

dimensions. They demonstrated the BBM equation's 

solutions' stability and uniqueness. The KdV 

equation, on the other hand, is unstable in its high 

wavenumber components. Furthermore, the KdV 

equation has an infinite number of motion integrals, 

whereas the BBM equation has just three (Molati and 

Khalique, 2012) 

In physical applications, the BBM equation is well-

known. It offers a model for long-wave propagation 

that includes nonlinear and dissipative phenomena. 

It's used to study long-wavelength surface waves in 

liquids, cold plasma hydro magnetic waves, 

compressible fluids acoustic-gravity waves, and 

harmonic crystal acoustic waves (Molati and 

Khalique, 2012). The dynamics of the BBM equation 

has drawn the attention of many mathematicians 

(Singh et al., 2011). For shallow water waves, the 

BBM equation has been examined as a regularized 

version of the Kdv equation. Finding analytic 

solutions to the nonlinear BBM Equation is crucial, 

as the equation also models complicated physical 

systems that can occur in engineering, chemistry, 

biology, mechanics, and physics (Talha and Khaled, 

2009). 

Fisher’s Equations 

As a nonlinear model for a physical system 

comprising linear diffusion and nonlinear growth, 

the Fisher equation assumes the following non-

dimensional form: 

𝑈𝑡= 𝑈𝑥𝑥+(1−Uα)(𝑈−𝜌), 𝑈(𝑥,0) =𝑔(𝑥)                        

(1.2) 

A constant-velocity front of transition from one 

homogeneous condition to another is described by 

(1.2) kink-like traveling wave solutions called 

Solitons. Solitons, on the other hand, emerge as a 

result of a delicate balancing between weak 

nonlinearity and dispersion. As a result, in 

Mathematics and Physics, a soliton is defined as a 

self-reinforcing solitary wave—a wave packet or 

pulse that keeps its shape while traveling at steady 

velocity. The dispersion relation between the 

frequency and the speed of the waves is referred to 

as "dispersive effects." Solitons are solutions to a 

class of weakly nonlinear dispersive partial 

differential equations that describe physical systems. 

Instead of dispersion, when diffusion occurs, energy 

released by nonlinearity balances energy consumed 

by diffusion, resulting in moving waves or fronts. 

As a consequence, moving wave fronts are a well-

studied solution form for reaction diffusion 

equations, with applications in chemistry, biology, 

and medicine (Wazwaz and Gorguis, 2004). 

Description of Aboodh Transform 

Aboodh transform is an integral transformation 

defined for function of exponential order (Aboodh 

2022). Consider the function in the set A defined as; 

𝐴= {(𝑡): ∃𝑀, 𝑐1, 𝑐2 >0, |(𝑡)|< 𝑀 𝑒|𝑡|𝑐𝑖 ,  𝑖𝑓 𝑡 ∈ (−1)𝑖× 

[0,∞ )}            (2.1) 

Where for any given function in the set 𝐴 defined 

above, the constant 𝑐1,2 may be either finite or 

infinite, but M must be infinite. According to 

Aboodh (2022), Aboodh Transform is defined as: 

A {(𝑡)} = 
1

W2 ∫ f(
t

w
)e−t∞

0
 dt=K(𝑤), 𝑡≥0, 𝑤 ∈ (𝑐1, 𝑐2)         

(2.2) 
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Or 

A {(𝑡)} = 
1

w
∫ f(t)e−twdt =

∞

0
  K(𝑤), 𝑡≥0, 𝑤 ∈ (𝑐1, 

𝑐2)                          (2.3) 

We note here, that 𝑤 in the above definition is used 

to factor 𝑡 in the analysis of function 𝑓. 

Aboodh Transform of Partial Derivatives Aboodh 

et al. (2022) extended the method to solving partial 

differential equations. The Aboodh transform of 

partial derivatives are obtained through integration 

by parts, then we find the following expressions 

A [
∂f(x, t)

∂t
] = w K(x, w) −

1

w
f(x, 0)                                      (2.4) 

A [
∂2f(x, t)

∂t2
] = w2 K(x, w) − f(x, 0) −

1

w
 
∂f(x, 0)

∂t
           (2.5) 

A [
∂3f(x, t)

∂t3
] = w3 K(x, w) − wf(x, 0) −  

∂f(x, 0)

∂t
           (2.6) 

A [
∂f(x, t)

∂t
] =

d

dx
[K(x, w)]                                                      (2.7) 

A [
∂2f(x, t)

∂t2
] =

d2

dx2
[K(x, w)]                                                     (2.8) 

A [
∂3f(x, t)

∂t3
] =

d3

dx3
[K(x, w)]                                              (2.9) 

Aboodh Transform of Some Functions 

By using the definition of Aboodh transform of 

equations (2.2)-(2.3) on some functions the results 

can be generated as tabulated in table 1. (Aboodh, 

2022). 

 

Table 1: Table of Functions and their Aboodh Transform 

𝐟(𝐭) 𝐀[𝐟(𝐭)] = 𝐅(𝐰) 

1 𝟏

𝐰𝟐
 

t 𝟏

𝐰𝟑
 

t2  
2! 

𝐰𝟒
 

tn   n ∈ N n!

𝐰𝐧+𝟐
 

eat 𝟏

𝐰𝟐 − 𝐚
 

sin(at) 𝐚

𝐰𝟑 + 𝐚𝟐𝐰
 

cos(at) 𝟏

𝐰𝟐 + 𝐚𝟐
 

 

METHODOLOGY 
In this paper, our interest is to solve some special 

nonlinear partial differential equations which are 

third order Benjamin-Bona-Mahony and second 
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order Fisher’s equations. We first demonstrate how 

the Aboodh transform method can be used to 

decompose the general nonlinear partial differential 

equation. (2018), we consider; 

𝜕𝑛𝑢(𝑥, 𝑡)

𝜕𝑡𝑛
+ 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)              (3.1) 

Where 𝑛=1, 2, 3… 

And the initial condition is given as 

𝜕𝑛−1𝑢(𝑥, 𝑡)

𝜕𝑡𝑛−1
∣𝑡=0=  𝑓𝑛−1(𝑥) 

where 
𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑡𝑛  is the partial derivative of function 

𝑢(𝑥,𝑡) of 𝑛𝑡ℎ order, while R represents the linear 

differential operator, 𝑁𝑢(𝑥,𝑡) represents the 

nonlinear terms of the differential equations, and 

𝑓(𝑥,𝑡) indicates the non-homogeneous (source) term. 

Applying the Aboodh transform on equation (3.1) we 

have; 

𝐴 [
𝜕𝑛𝑢(𝑥, 𝑡)

𝜕𝑡𝑛 ] + 𝐴[𝑅𝑢(𝑥, 𝑡)] = 𝐴[𝑔(𝑥, 𝑡)]                  (3.2) 

We recall that 

𝐴 [
𝜕𝑛𝑢(𝑥, 𝑡)

𝜕𝑡𝑛 ] = 𝑤𝑛𝐴[𝑢(𝑥, 𝑡)] − ∑
1

𝑤2−𝑛+𝑘

𝑛−1

𝑘=0

𝜕𝑘𝑢(𝑥, 0)

𝜕𝑡𝑘
             (3.3) 

Substituting Equation (3.3) into Equation (3.2), we 

have; 

𝐴[𝑢(𝑥, 𝑡)] =
1

𝑤𝑛 𝐴[𝑔(𝑥, 𝑡)] + ∑
1

𝑤2+𝑘
𝑛−1
𝑘=0

𝜕𝑘𝑢(𝑥,0)

𝜕𝑡𝑘  −

  
1

𝑤𝑛   𝐴[𝑅𝑢(𝑥, 𝑡)] + 𝐴[𝑁𝑢(𝑥, 𝑡)]           (3.3) 

Applying the inverse Aboodh transform to Equation 

(3.3), we have; 

𝑢(𝑥, 𝑡) = 𝐴−1 [
1

𝑤𝑛 𝐴[𝑔(𝑥, 𝑡)] +

∑
1

𝑤2+𝑘
𝑛−1
𝑘=0

𝜕𝑘𝑢(𝑥,0)

𝜕𝑡𝑘 ] − 𝐴−1 [
1

𝑤𝑛   𝐴[𝑅𝑢(𝑥, 𝑡)] +

𝐴[𝑁𝑢(𝑥, 𝑡)]] (3.4) 

We can rewrite this as; 

𝑢(𝑥, 𝑡) = 𝐹(𝑥, 𝑡)

− 𝐴−1 [
1

𝑤𝑛
  𝐴[𝑅𝑢(𝑥, 𝑡)]

+ 𝐴[𝑁𝑢(𝑥, 𝑡)]]                    (3.5) 

Where (𝑥,) represents the expression that rises from 

the given initial conditions and the source terms after 

simplification. We note here that, our solution will be 

in the form of infinite series as 

𝑢(𝑥, 𝑡)

= ∑ 𝑢𝑘(𝑥, 𝑡)                                                         

∞

𝑘=0

(3.6) 

We can now decompose the nonlinear term as 

𝑁𝑢(𝑥, 𝑡)

=  ∑ 𝐴𝑘                                                        

∞

𝑘=0

(3.7) 

Where 𝐴𝑘 is defined as the Adomian polynomials 

which can be generated using the formula 

𝐴𝑘 =  
1

𝐾!

𝜕𝑘

𝜕𝑦𝑘 [𝑁 (∑ 𝜌𝑗𝑢𝑗

∞

𝑗=0

)] 𝜌 = 0, 𝑘 = 0,1. . ,                       (3.8𝑎) 
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Where 𝜌 is taken as formal parameter and we will 

drop it after the calculation by equating it to zero. 

According to Aboodh (2011), Adomian polynomial 

can be computed in different ways it is not unique 

and we can calculate it from the Tylor expansion of 

function (𝑢) around the first component 𝑢0 i.e. 

(𝑢)= ∑ 𝐴𝑘 =∞
𝑘=0

∑
(𝑢−𝑢0)0

𝑘!
∞
𝑘=0  𝑓(𝑘)(𝑢0)                                                      

(3.8𝑏) 

Here, we provided the first five Adomian 

polynomials for the 

Nonlinear terms 𝑁𝑢=(𝑢) 

𝐴0=(𝑢0) 

𝐴1=𝑢1𝑓′(𝑢0), 

𝐴2= 𝑢2𝑓′(𝑢0) +  
𝑢1

2

2!
𝑓′′(𝑢0), 

𝐴3=𝑢3𝑓′(𝑢0) +𝑢1𝑢2 𝑓′′(𝑢0)   +   
𝑢1

3

3!
 𝑓′′′(𝑢0), 

𝐴4=𝑢4 𝑓′(𝑢0)    +   ( 𝑢1𝑢2 +
𝑢2

2

2!
)𝑓′′(𝑢0)+( 

𝑢1
2𝑢2

2!
)𝑓′′′(𝑢0)+ 

𝑢4
2

4!
 𝑓(4)(𝑢0), 

Now substituting Equation (3.7) and Equation (3.6) 

into Equation (3.5) we have that; 

∑ 𝑢𝑘(𝑥, 𝑡)  =  𝐹(𝑥, 𝑡) −∞
𝑘=0

𝐴−1 [
1

𝑤𝑛   𝐴[𝑅 ∑ 𝑢𝑘(𝑥, 𝑡) ∞
𝑘=0 ] +

𝐴[ ∑ 𝐴𝑘    ∞
𝑘=0 ]]                (3.9) 

Then starting to evaluate from equation (3.9) at 

𝑘=0, we have 𝑢0(𝑥,𝑡)=𝐹(𝑥,𝑡)                                                   

(3.10) 

And the recursive relation from equation (3.9) given 

as: 

𝑢𝑘+1(𝑥, 𝑡) = −𝐴−1 [
1

𝑤𝑛
  𝐴[𝑅𝑢𝑘(𝑥, 𝑡)] + 𝐴[(𝐴𝑘)]]              (3.11) 

Where 𝑛=1, 2, 3 (from the order of the PDE) and 

𝑘≥0. The analytical solution (𝑥,) can be 

approximated by truncated series. 

𝑢(𝑥,𝑡)=

lim
k→∞

∑ uk(x, t)                                                         ∞
k=0               (3.12) 

The infinite series in equation (3.12) may converge 

completely very fast to exact solution or with few 

terms truncation will result to the exact solution of 

the given differential equation. 

NUMERICAL IMPLEMENTATIONS 

Numerical Problem 1 

We consider the BBM equation, 

𝑈𝑡+𝑈𝑥+𝑈𝑈𝑥−𝑈𝑥𝑥𝑡=0,   (𝑥,0)=𝑥   (4.1) 

Taking Aboodh transform of each term we have; 

A [𝑈𝑡] = A[𝑈𝑥𝑥𝑡]−A[𝑈𝑥+𝑈𝑈𝑥]                                                                              

(4.2) 

Where 

A [𝑈𝑡] =w A [(𝑥,)]−
1

w
𝑈(𝑥,0) 

Thus Equation (4.2) becomes; 

A[U(x, t)] =  
𝟏

𝐰𝟐 (𝑥,0)+ 
𝟏

𝐰
A[𝑈𝑥𝑥𝑡−𝑈𝑥−𝑈𝑈𝑥 ]                                                

(4.3) 

Introducing the initial condition and taking the 

inverse of the Aboodh transform we have; 

(𝑥,𝑡)=𝑥+A−1[
𝟏

𝐰
A[𝑈𝑥𝑥𝑡−𝑈𝑥−𝑈𝑈𝑥 ] ]                                                          

(4.4) 

But 

U(x, t)

= ∑ Uk(x, t)                                                                           

∞

k=0

(4.5) 

And 

UUx

= ∑ Ak                                                                                (4.6)                  

∞

k=0

 

Substituting Equations (4.5)-(4.6) in Equation (4.4) 

we have 
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𝑈0=𝑥                          (4.7) 

and the recurrence relation as 

𝑈𝑘+1=A−1[
1

w
A [𝑈𝑘𝑥𝑥𝑡−𝑈𝑘𝑥−𝐴𝑘]]                                               

(4.8) 

 

Now we compute the individual terms from the 

recurrence equation. 𝑈1=A−1[
1

w
A [𝑈0𝑥𝑥𝑡−𝑈0𝑥−𝐴0]]                                                                       

(4.9) 

Where, 

𝐴0=𝑈0𝑈0𝑥=𝑥∙1=   , 𝑈0𝑥𝑥𝑡=0 and 𝑈0𝑥 =1 

Thus Equation (4.9) becomes 

𝑈1= A−1   [   
  1

w
 A [0−1−𝑥]] 

=    A−1 [    
1

w3  
(−1−𝑥)] 

𝑈1= − (1+𝑥) 𝑡                                                                          

(4.10) 

Again from equation (4.8) we have; 

𝑈2=A−1 [
1

w  
A [𝑈1𝑥𝑥𝑡−𝑈1𝑥−𝐴1]]                                                                          

(4.11) 

Where, 

𝐴1=𝑈0
∂U1

∂x
+𝑈1 

∂U0

∂x
 

=(−𝑡)−(1+𝑥)𝑡∙1 =−(2𝑥+1)t 

Thus, it follows from equation (4.11) that 

𝑈2 = (𝑥+1) 𝑡2                                                                             

(4.12) 

Similarly, from equation (4.8) we compute 𝑈3 as 

follows; 

𝑈3=A−1 [
1

w  
A[𝑈2𝑥𝑥𝑡−𝑈2𝑥−𝐴2]]                                                                              

(4.13) 

Where; 

𝐴2=𝑈0
∂U2

∂x
+𝑈1 

∂U1

∂x
+ U2 

∂U0

∂x
 

= (3𝑥+2) 𝑡2 

Hence equation (4.13) becomes; 

𝑈3=
2!

3!
. (−3(x + 1)). A−1 [

3!

W5] 

𝑈3= − (𝑥+1) 𝑡3                                                                                     

(4.14) 

Therefore, the solution of equation (4.1) is 

𝑈   (𝑥,)=𝑈0+𝑈1+𝑈2+𝑈3+⋯                                                  

(4.15) 

= x + [
−(1+x)t

1+t
] 

𝑈 (,)  

=
x−t

1+t
                                                                                                       

(4.16) 

CONCLUSION 

In this paper, the Aboodh -Adomian Decomposition 

Method (AADM) has been successfully applied to 

find the solutions of nonlinear Benjamin-Bona-

Mahony and Fisher’s equations as presented in 

figures 1-5. It is observed that the use of hybrid 

EADM provides very good approximate solutions 

when compared with exact values than Adomian 

Decomposition Method (ADM). The method 

transforms these equations to recurrences relation 

whose terms can be computed with the aid of any 

symbolic computational environment such as Maple, 

Mathematica, and Scientific workplace among 

others. The solution using this method is usually in 

the form of a finite series and it has high and fastest 

rate of convergence to the exact solutions of the 

relevant problems. It is possible to obtain numerical 

solutions using this method without the use of 

restrictive assumptions or discretization, making it 

free of round-off errors. The Aboodh –Adomian 

Decomposition method use a simple and 

straightforward calculation. The number of 

numerical computations is decreased. The efficiency 

of AADM and the reduction in calculations 

demonstrate its extensive applicability, particularly 

for higher order PDEs. 
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