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Abstract 

In recent years, there has been an increase in both scientific and judicial interest in forensic speaker 
recognition. Due to the diversity of speakers, speaker recognition is one of the most difficult challenges in 
biometric authentication. A forensic expert must assess evidence material during a criminal inquiry. This 
paper provides a brief overview of the topic of forensic speaker recognition, as well as explanations of its 
approaches, many feature extraction and modelling modules, applications, underlying techniques, and some 
performance evaluation indicators. In the overview, the limitations and application areas of existing forensic 
speech recognition systems are also discussed. The study concludes with a discussion of future trends and 
research prospects in this area.   

1. Introduction  

Speaker recognition is a biometric technique 
employed in many different contexts, with 
various degrees of success [1][2]. One of the most 
controversial usage of automatic speaker 
recognition is their employment  in the forensics 
context, in which the goal is to analyze the speech 
data coming from wiretappings or  ambient 
recordings retrieved during criminal 
investigation, with the purpose of recognizing if a 
given  sentence had been uttered by a given 
person[3][4][5].  

The increase in development and penetration of 
communication technology surely helped 
humankind in better, accessible and efficient 
communication but it is not without its ill 
consequences [6][7]. Information  and 
communication technology has also helped anti-
social elements in committing more organized 
and  white collar crimes, an in turn, law 
enforcement agencies should be better equipped 
with advanced  technology to counter or deal with 
crimes[8][9]. Speaker identification technology is 
one of the many tools  which our law 
enforcement agencies could rely upon and it is 
also popular identification technique used for  
monitoring and authenticating human subjects 
using their speech signal[10][11].  

Forensic recognition system differs from regular 
speaker recognition in a number of ways, 
including the possibility of short voice records, 

low voice quality, background noise, and so on 
[12][13][14]. The purpose of automatic speaker 
recognition systems is to extract, characterise, and 
recognise information communicating a speaker's 
identity from a voice sample. The task of 
confirming the stated identity of the speaker 
based on voice signal is known as forensic 
speaker recognition [15][16]. To determine if the 
unknown voice in the questioned tape belongs to 
the suspected speaker, a variety of procedures 
might be used. There is both within-speaker and 
between-speaker variation. As a result, forensic  
speaker recognition systems should produce a 
statistical methods that attempts to give the court 
an indicator  of the strength of the evidence based 
on the estimated within-source and between-
source  variability[17][18].  

Deep learning is a subset of machine learning that 
is essentially a three-layer neural network. Deep 
learning differs from traditional machine learning 
in the kind of data it uses and the learning 
algorithms it employs.  To create predictions, 
machine learning algorithms use structured, 
labelled data that is, particular features  are 
identified from the model's input data and 
grouped into tables[19][20[21].  

The application of science or technology in the 
investigation and creation of facts or evidence in 
a court of law is referred to as forensic [22]. The 
role of forensic science is to provide knowledge 
to assist investigators and courts of law in 
answering important issues. The method of 
establishing if a certain individual is the source of 
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a questioned voice recording is known as forensic 
speaker recognition [23]. This proced
comparingunknown voice recordings with one or 
more known voice recordings.  

2. Forensic Speaker Recognition Process 

Biometrics is the study of determining an 
individual's identification based on biological and 
behavioural features. Forensic automatic speaker 
recognition provides a data-driven biometric 
technology for interpreting recorded speech 
quantitatively as evidence. When you leave your 
voice as criminal evidence, a telephone recording, 
or an audible speech for an ear witness
experts must notice the problem.  Today, forensic 
recognition is carried out by experts, most 
commonly phoneticians with a linguistic 
statistical background [24][25].  

The method of determining if a suspected 
individual is the source of a questioned voice 
sample is known as forensic speaker recognition. 
The role of the forensic expert is to attest to the 
value of the voice evidence. The use of science 
and technology in the investigation and 

Figure1. Approach of Forensic Speaker Recognition 

2.1. Aural-perceptual/Forensic Expert  

Aural-perceptual approaches, which are based on 
human auditory perception, rely on skilled 
phoneticians carefully listening to recordings and 
estimating the level of similarity between voices 
based on observed variations in speech samples 
[32].  
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perceptual/Forensic Expert   

perceptual approaches, which are based on 
human auditory perception, rely on skilled 

listening to recordings and 
estimating the level of similarity between voices 

in speech samples 

The ability to differentiate people by listening to 
their voices is one of God's gifts. Language, 
prosody, pitch, intensity, style, and other spectral 
features are used to identify a person using a 
range of various aspects of the human voice. 
There are a number of factors that an untrained 
listener might use to determine how
a specific speaker based on these factors. 
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i) Identification of voice segments   

ii) Detection and discrimination   

iii) Linguistic content  

2.2. Semi-automatic approach / A
instrumental approach 

Acoustic measurements of numerous variables 
such as the average fundamental frequency, 
articulation rate, formant Centre-frequencies, and 
other features, as well as statistical comparisons 
of their statistical properties, are used in auditory
instrumental approaches. The spectrographic 
approach of speaker 3 recognition
device that turns voice data into graphic 
representation. Spectrograms are 
representations of speech signals that transmit 
information about the text that the speaker has 
pronounced [33].  

The view on similarities or dissimilarities 
between two specimens will be taken using this 
technique based on their phonetic and acoustic 
components such as frequencies, amplitude, 
plosive duration, and unvoiced signals at different 
positions.  

2.3. Automatic Approach/ Computerized 
Approach   

Figure 2. Forensic speaker recognition 

3.1 Feature Extraction  

The practise of retaining relevant information in a 
voice signal while rejecting undesired 
information is known as feature extraction. The 
feature extraction module takes raw voice data 
and converts it into a feature 
increased speaker-specific properties and 
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statistical duplicates removed. To 
recognition performance, it is necessary to extract 
the optimum parametric representation of audio 
data.  The effectiveness of this phase has an 
impact on the behaviour of the next phase. 

The feature extraction stage's main goal is to 
extract speaker-specific information from voice 
samples for use in the identification challenge. 
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During the feature extraction phase, the input 
voice samples are converted into a sequence of 
multidimensional vectors, each of which 
corresponds to a small portion of 
speech sample [37][38].  

 

The recognition of a speaker is based on both low 
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[39].  
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to a group of signal processing techniques that 
determine whether small portions of a speech 
signal contain voiced or unvoiced signal data. 
Normally, a VAD employs decision rules based 
on estimated signal features. VADs are used as a 
pre-processing block in a range of speech 
processing applications, including speech 
enhancement, speech coding, and speech and 
speaker recognition, when it is necessary to 
distinguish between voiced and unvoiced signal 
portions. A simple VAD works by extracting 
measurable features from an incoming audio 
signal that is separated into frames of 5-40 
milliseconds in length.  

The extracted features from the audio signal are 
then compared to a threshold limit, which is 
commonly calculated from the input signal's noise 
only periods, and a VAD judgement is made. A 
VAD decision (VAD = 1) is computed if the 
characteristic of the input frame exceeds the 
estimated threshold value, indicating that speech 
is present. If not, a VAD decision (VAD = 0) is 
generated, indicating that there is no speech in the 
input frame.  

iii)Dynamic Time Warping (DTW)  

Dynamic time warping is an algorithm that 
determines whether two sequences that differ in 
time or speed are similar. The varied speeds of 
speakers should be handled by a good ASR 
system. This algorithm looks for similarities 
between two sequences with various constraints.  

IV) Vector Quantization (VQ)  

Vector quantization is a type of lossy 
compression. The signal is first separated into 
vectors in vector quantization. Then, for each 
vector, apply quantization. VQ allows for multi-
dimensional visualisation. It is possible to do so 
by following the procedures below:  

1) A codebook is created first using a code vector. 
2) Then, for each input vector in the codebook, 
determine the smallest Euclidean distance 
between them.  
3) Once you've found the shortest distance, 
replace the vector with the codebook's index. The 
decision boundary is determined using the Linde 
BuzoGray (LBG) algorithm. 
 

v) Linear Predictive Coding (LPC)   

LPC is a digital way of encoding an analogue 
signal in which a specific value is anticipated by a 
linear function of the signal's previous values. 
The vocal tract, which can be thought of as a 
changeable diameter tube, produces human 
speech. The LPC model is based on a 
mathematical approximation of the vocal tract, 
which is represented by this tube of changing 
diameter. The speech sample s (t) is represented 
as a linear sum of the next sample determined by 
a linear combination of previous samples at any 
given time t. The linear nature of LPC is the most 
crucial feature. The value of the next sample can 
be determined by a linear combination of prior 
samples using a predictive filter [41].  

vi)Linear Predictive Cepstral Coding (LPCC)  

The biological structure of the human vocal track 
is shown by LPCC, which is computed via 
recursion from the LPC parameters to the LPC 
cestrum using an all pole model. The filter used in 
this feature extraction is usually an all-pole filter. 
The all-pole filter's settings. The all-pole filter's 
parameters are calculated using an auto-
regressive approach in which the signal at each 
time instant can be identified using a set of 
preceding samples [42].  

3.1.2 Feature Modelling/Classification  

The speech sample is passed via the feature 
extraction module and the characteristic vectors 
are employed to create a speaker model at the 
time of enrolment. In speaker verification 
systems, a variety of modelling methodologies 
have been used to achieve some or all of these 
features. The modelling option is influenced by 
the type of speech to be used, the predicted 
performance, the ease of training and updating, as 
well as storage and computational variables. So 
will go over some of the most prevalent 
modelling techniques in further depth. The 
listener, however, is not able to understand 
exactly.  

a) Gaussian Mixture Model  

Gaussian Mixture Models (GMMs) presume that 
a fixed number of Gaussian distributions exist, 
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each of which represents a cluster. As a result, the 
data points belonging to a single distribution tend 
to be grouped together in a Gaussian Mixture 
Model. A Gaussian mixture model (GMM) is a 
type of probabilistic model in which all data 
points are generated from a mixture of finite 
Gaussian distributions with unknown parameters. 
The parameters for Gaussian mixture models are 
produced from a well-trained prior model 
usingeither maximum a posteriori estimation or 
an iterative expectation-maximization approach. 
When it comes to modelling data, especially data 
from multiple groups, Gaussian mixture models 
are quite effective [43][44].  

b) Hidden Markov Model  

A hidden Markov chain is a Markov chain 
containing a hidden Markov. This model is 
analogous to a Markov model. It’s a completely 
random process. In a Markov model, future states 
are decided only by the current state, not by the 
prior state. The states are immediately visible to 
the observer. It is a statistical strategy that has 
been effectively used in the recognition of 
speakers. HMM generates a statistical model of 
the speaker's voice production. The Viterbi 
technique is used to determine the likelihood of 
hidden states creating an unknown output 
sequence given the model parameters provided 
for the reference.  

c) Support Vector Machine (SVM)  

The Support Vector Machine (SVM) is a 
supervised machine learning technique that can 
solve classification and regression problems. It is, 
however, mostly employed to solve 
categorization difficulties.  Each data item is 
plotted as a point in n-dimensional space (where n 
is the number of features you have), with the 
value of each feature being the value of a certain 
coordinate in the SVM algorithm. It can be used 
to determine whether the data belongs to a 
legitimate user or an imposter. Binary SVM and 
multi SVM are two types of SVM. One can use 
binary SVM to determine whether or not a person 
can be identified. The attributes of two speakers 
are compared using binary SVM. Multi SVM, on 
the other hand, compares the characteristics of 
more than two speakers. It falls within the 
category of supervised classifiers.   

Deep Learning  

Deep learning is a subset of machine learning 
techniques that aims to extract high-level features 
from large amounts of data. It is a new area of 
research in many machine learning and signal 
processing applications.  Deep Neural Network 
(DNN), Deep Belief Network (DBN), and 
Convolutional Neural Network (CNN) are several 
deep learning architectures that have been 
employed in signal processing.  

Auditory analysis and spectrographic analysis are 
two of the most regularly employed procedures 
by forensic laboratories across the world. These 
methods are used to determine whether a criminal 
is guilty or innocent. The gold wave software is 
used by the majority of forensic science 
laboratories in India for pre-processing speech 
signals and Multi-Speech. They work using the 
formant frequencies f1 and f2 to determine 
whether the victim is guilty or innocent [45][46].  

4) Database  

In different languages around the world, there are 
a variety of options for speaker detection. The 
TIMIT database is used in the majority of the 
studies. TIMIT is a corpus of phonemically and 
lexically transcribed speech of different genders 
and dialects of American English speakers. Time 
has been demarcated for each transcribed 
element. It was created for autonomous voice and 
speaker recognition systems, as well as acoustic-
phonetic knowledge.  

The National Institute of Standards and 
Technology (NIST) Speaker Recognition 
Evaluation Database is another widely used 
dataset. NIST collects data to help industry, 
academia, and government agencies develop 
innovation and enhance people's lives. Other 
databases that have been used include Polyphone 
IPSC-02, which is available in French and 
German. PIEAS stores both telephonic and non-
telephonic information. NOISEX and CSLU 
datasets.  

5) Performance Evaluation   

5.1 Accuracy Rate  
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There are various standards for measuring the 
performance of a biometric systems. Accuracy is 
one metric for evaluating classification models. It 
can also be said as the fraction of predictions. It 
can be given by   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correct predictions

Total number of predictions
 

For binary classification, accuracy can also be 
calculated in terms of positives and negatives as 
follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 

 
Where TP –True Positives, TN-True Negatives, 
FP- False Positives, FN-False Negatives.  
 
5.2 Equal Error Rate (EER)  

EER measures the error rate of a system when the 
threshold is adjusted so that the number of false 
acceptances is equal to the number of false 
rejections. The False Rejection Rate (FRR) is also 
known as “Type I” error. It indicates the 
possibility of inadvertent rejection of a person 
who should be able to access to the biometric 
system. The False Acceptance Rate (FAR) also 
known as “Type II” error. It shows the likelihood 
that someone who does not have components 
from a speaker and channel subspace. In a real 
application, the error performance can be adjusted 
to suit the level of security required: secure or 
convenient.   

6) Limitations of Forensic Speaker 
Identification  

1. Short-duration samples should be appropriately 
analysed.   

2. Language differences are difficult to analyse.  

3. Emotion variability is difficult to analyse.  

4. Misspoken or misread prompted phrases.  

5. Poorly recorded/noisy samples are difficult to 
analyse.  

6. Insufficient number of comparable words.  

7. Disguise in speech samples.  

8. Extreme emotional states.  

9. Channel mismatch during recording.  

10. Different pronunciation speed of the testing 
and training data.  

11. Variation in speech due to cough and cold.  

7. Conclusion  

There are still certain flaws in the speaker 
recognition system that can be rectified by 
undertaking research in sub-domains. The 
technology's main application is in forensic 
speaker recognition, where the technique’s results 
could be used as evidence in court. This paper 
provides an overview of forensic speaker 
recognition.  Various strategies for feature 
extraction and modelling have been discussed. 
Different approaches to forensic speaker 
recognition have even been discussed. So there is 
a need for further research.  
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