
Journal of Positive School Psychology http://journalppw.com

2022, Vol. 6, No. 10, 3428-3431

Structural Methods For Program Testing

M.M.Aripov

Associate Professor of the Department of Informatics, Kokand State Pedagogical Institute

Abstract – Structural methods for program testing are described, such as branch testing, program

verification, symbolic testing, and generating structural tests. An algorithm for the minimum coverage of

the program graph based on the packing adjacency matrix and a specific example of the minimum coverage

of the program graph are given.

Keywords - testing, program graph, minimum program graph coverage, packed adjacency matrix, DD-

paths, vertex, branches, g-graph, h-graph, algorithm complexity.

INTRODUCTION

Testing - checking the operation of the program

based on the results of its execution on specially

selected sets of initial data - tests. The program

can be tested either completely (full testing) or

selectively (selective testing) at individual points

in the source data space. With random testing, the

reliability of a program cannot be fully

guaranteed. If tests are offered by the

programmer, then they can cover only those parts

of the program with which the programmer is

most familiar. Therefore, many hidden errors

may remain undetected. Full testing on all

possible input sets of the program or even testing

of all paths in the program structure is unrealistic,

since the number of tests will be unacceptably

large. For example, if the number of inputs is ten

and each input of the program can take on ten

values, the number of elementary tests required to

complete the test would be 1010.

Branch testing. A more stringent requirement is

that the chosen paths must span all branches of

the program structure, or all branches across the

board (dynamic testing or branch testing). This

approach ensures that all statements and all

branches are tested once. Experience shows that

a significant number of errors arise due to

inaccuracies in the formulation of exit conditions

from loops, so it is proposed to introduce an

additional requirement that each loop be tested by

two tests, one of which would lead to the

execution of the loop with a return, and the other

would go through the loop without return.

Program verification. Any testing using

numerical sets of initial data allows you to check

the program only in a limited number of points in

the space of initial data, so more general methods

are of greatest interest. This includes, first of all,

the verification of programs - the proof of their

correctness using mathematical methods for

proving theorems. To do this, the program is

presented as a sequence of more or less simple

statements, the proof of which is not difficult.

This process can be automated, but practical

results in this direction are still insignificant. The

fact is that the proof of even relatively simple

statements is a procedure that requires high

qualifications and is subject to automation only in

some rare cases. Due to the great complexity of

the proof, errors are possible here, which from a

practical point of view, despite the apparent rigor,

lead to the fact that the verification method

cannot guarantee the complete reliability of the

verified program.

Symbolic testing. In contrast to verification,

program testing consists in checking the

correctness of the numerical results of program

operation with specially selected values of input

variables - test sets. In some cases, testing can

also be done symbolically - by executing

procedures based on symbolic inputs (notations

3429 Journal of Positive School Psychology

of input variables that allow expressing program

outputs also in symbolic form). Different

symbolic inputs and outputs correspond to

different program paths. If there are a limited

number of such paths, then symbolic execution

can be used to validate the program using

symbolic input and output expressions. The

advantage of symbolic testing over numerical

testing is that if a numerical test allows you to

check the operation of a program on individual

numerical values of input sets, then symbolic

testing operates on sets of initial data determined

by constraints. Symbolic expressions of program

paths can be obtained either by forward

substitution or by back substitution. Direct

substitution corresponds to the actions performed

when implementing a certain path in the program

structure. With direct substitution, symbolic

execution is carried out for each executable

statement with storage of intermediate symbolic

expressions of variables. In the case of back

substitution, restrictions on the input variables are

built "from the bottom up" when passing the path

on the program graph in the opposite direction.

As a result, the same restrictions are obtained as

in direct substitution. However, with back

substitution, no memory is needed to remember

the symbolic records of variables. But with direct

substitution, there is the possibility of early

detection of unfeasible paths with conflicting

constraints on the initial data. In symbolic testing,

cyclic sections of the program present a certain

difficulty, since in this case the number of

iterations is unknown. The problem can most

simply be overcome by substituting some pre-

estimated number of iterations. However, in this

case, the resulting restrictions may not be

accurate. The second difficulty is related to the

presence of modules in the program. The latter is

overcome by the symbolic execution of the

modules encountered on the given path. The third

difficulty is related to the symbolic execution of

data arrays. The fact is that in some cases the

value of the variable is set only during the

execution of the program. This difficulty can be

overcome by introducing additional

(hypothetical) restrictions corresponding to

various possible cases.

Generation of structural tests. The

shortcomings mentioned above are devoid of

structural testing of programs on specific

numerical initial data [1-,3]. Test generation

consists in choosing a set of paths that completely

cover the program graph, and in determining the

test data on which these paths are executed. A

program graph (control graph) is a structural

model of a program that shows the relationship

between its elements. The vertices of the graph

represent the branching and union operators, and

the arcs represent the data processing and

transmission operators. The graph is represented

as a packed adjacency matrix (PAM). The packed

adjacency matrix A = { aij} of a graph with v

vertices is a (v x l) matrix (l is the maximum

exit degree of the i-th vertex). The degree of entry

dinp(vi) and exit dout(vi) of some vertex of the

graph means, respectively, the number of

incoming and outgoing arcs from the vertices.

Each row i of the PAM is filled in random order

with the numbers of vertices that are adjacent to

vertex i. The representation of graphs in the form

of PAM has the following advantages over other

existing representations: for large graphs, the

number of columns of PAM is much less than the

number of columns of the corresponding

adjacency matrix; it is relatively easy to model

the process of moving along the graph to build

paths; reduces graph processing time. The test

criterion is the criterion of branches, where a

program branch is understood as a certain

sequence of statements that are executed strictly

one after another. Thus, a branch is a linear

section of a program. To construct the minimum

coverage, the graph is divided into DD-paths

using the CMS of the original graph. The set of

vertices with output degree dout(vi)>1, input and

output vertices are denoted as D-vertices. Then a

DD-path is a simple path between two D-vertices,

such that there are no D-vertices within its

boundaries. Then the cycles and loops are

determined and the arcs closing them are

excluded.

The proposed algorithm for constructing a

minimum cover (MPOC) of a graph consists of

the following steps.

 Stage 1. The vertex i is looked through

and the adjacent vertex j is determined, the

M.M.Aripov 3430

number of which is the maximum among the

numbers of adjacent vertices, where i Є { l , n -

1;} n is the number of graph vertices.

Fig. 1. An example of a program graph

Stage 2. The arc (vi, vj) is viewed. If dinp (vi) > 1

and dout(vj) >1 , then the arc g(vi,vj) is excluded.

If dout (vi) > 1 and dinp (vj) = 1, then the arc h(

vi, vj) is marked.

 Step 3. Substitute i = j and repeat steps

1-2 until j is equal to the number of the final

(output) vertex. The path is fixed as a sequence of

values j.

 Stage 4. If there are no arcs of type g in

the constructed path, then the last arc of type h is

excluded.

 Stage 5. Stages 1–2 are repeated until

the constructed path contains no arcs of type g

and h

 An example of constructing a minimal

coverage of a program graph. Let the program

graph shown in Fig. 1. Graph arcs mean a

sequence of computational program operators,

graph vertices — branching and union operators.

After eliminating the closing cycles of arcs (they

are tested separately), the graph in Fig. 1 is

described by the following PAM:

 The first stages of the MPOC

algorithm give the following results:

 Stage 1. Set i = 1, j = 2. {1, 2}

 Stage 2. The arc (vi, vj) is not excluded

and is not marked.

 Stage 1. Set i = 2, j = 3. {1, 2, 3}

 Stage 2. One of the arcs (v2, v3) is

excluded

 Stage 1. Set i = 3, j = 10. p1 = {1, 2, 3,

10}

 Stage 2. The arc (v3, vI0) is eliminated.

 Stage 1. Set i = 3, j = 6.

Stage 2. The arcs (v6, v7), (v8, v9), (v9,

vI0) are excluded, the arc

 h(v3, v6) noted.

 The procedures of stages 1–2 are

repeated until the path to the final vertex of the

graph v10 corresponding to the receipt of the

calculation result is determined. In this case, the

first path p1 = { l , 2, 3, 10} is determined after

three steps. The following steps, repeated until

there are no arcs of type g and h in the constructed

path, allow us to determine the following paths:

 р2 = {1, 2, 3, 6, 7, 8, 9, 10},

 р3 = {1. 2, 3, 4, 6, 7, 8, 9,

10},

 р4 = {1. 2, 3, 4, 6. 7, 8, 9,

10},

 р5 = {1, 2, 3, 4, 5, 10}.

 To create one path in the worst case, n

operations are required, and to build the

minimum number of operations, m operations are

required, where m is the minimum number of

paths that cover all branches of the program

graph. Therefore, the complexity of the

developed algorithm is

3431 Journal of Positive School Psychology

O(|v| x |m|) => O(|v|)

 The developed algorithm is more

efficient than the algorithm proposed in [5], since

in this algorithm the vertices are excluded after

creating a certain path, i.e. additional time

required.

Literature

1. Iyudu K.A., Aripov M.M. Automating

the generation of paths for testing

programs written in Fortran.

Programming, 1986, No. 7.

2. Iyudu K.A., Aripov M.M. Testing a

program based on the minimum coverage

of its graph. Control systems and

machines, 1985, No. 6.

3. Iyudu K.A., Aripov M.M. Automation of

structural testing of programs.

Republican conference. Reliability and

quality of software. Abstracts of reports.

Lvov, January 29-31, 1985

 4. Kulikov S.S. Software testing. Minsk,

2020.

 5. Simon C., Ntafos S., Louis Hakimi. On

structured digrafs and program

 testing. IEEE Trans. On Computers, vol. C-

30, № 1, January 1981.

