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INTRODUCTION 

Testing - checking the operation of the program 

based on the results of its execution on specially 

selected sets of initial data - tests. The program 

can be tested either completely (full testing) or 

selectively (selective testing) at individual points 

in the source data space. With random testing, the 

reliability of a program cannot be fully 

guaranteed. If tests are offered by the 

programmer, then they can cover only those parts 

of the program with which the programmer is 

most familiar. Therefore, many hidden errors 

may remain undetected. Full testing on all 

possible input sets of the program or even testing 

of all paths in the program structure is unrealistic, 

since the number of tests will be unacceptably 

large. For example, if the number of inputs is ten 

and each input of the program can take on ten 

values, the number of elementary tests required to 

complete the test would be 1010. 

 

Branch testing. A more stringent requirement is 

that the chosen paths must span all branches of 

the program structure, or all branches across the 

board (dynamic testing or branch testing). This 

approach ensures that all statements and all 

branches are tested once. Experience shows that 

a significant number of errors arise due to 

inaccuracies in the formulation of exit conditions 

from loops, so it is proposed to introduce an 

additional requirement that each loop be tested by 

two tests, one of which would lead to the 

execution of the loop with a return, and the other 

would go through the loop without return. 

 

Program verification. Any testing using 

numerical sets of initial data allows you to check 

the program only in a limited number of points in 

the space of initial data, so more general methods 

are of greatest interest. This includes, first of all, 

the verification of programs - the proof of their 

correctness using mathematical methods for 

proving theorems. To do this, the program is 

presented as a sequence of more or less simple 

statements, the proof of which is not difficult. 

This process can be automated, but practical 

results in this direction are still insignificant. The 

fact is that the proof of even relatively simple 

statements is a procedure that requires high 

qualifications and is subject to automation only in 

some rare cases. Due to the great complexity of 

the proof, errors are possible here, which from a 

practical point of view, despite the apparent rigor, 

lead to the fact that the verification method 

cannot guarantee the complete reliability of the 

verified program. 

 

Symbolic testing. In contrast to verification, 

program testing consists in checking the 

correctness of the numerical results of program 

operation with specially selected values of input 

variables - test sets. In some cases, testing can 

also be done symbolically - by executing 

procedures based on symbolic inputs (notations 
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of input variables that allow expressing program 

outputs also in symbolic form). Different 

symbolic inputs and outputs correspond to 

different program paths. If there are a limited 

number of such paths, then symbolic execution 

can be used to validate the program using 

symbolic input and output expressions. The 

advantage of symbolic testing over numerical 

testing is that if a numerical test allows you to 

check the operation of a program on individual 

numerical values of input sets, then symbolic 

testing operates on sets of initial data determined 

by constraints. Symbolic expressions of program 

paths can be obtained either by forward 

substitution or by back substitution. Direct 

substitution corresponds to the actions performed 

when implementing a certain path in the program 

structure. With direct substitution, symbolic 

execution is carried out for each executable 

statement with storage of intermediate symbolic 

expressions of variables. In the case of back 

substitution, restrictions on the input variables are 

built "from the bottom up" when passing the path 

on the program graph in the opposite direction. 

As a result, the same restrictions are obtained as 

in direct substitution. However, with back 

substitution, no memory is needed to remember 

the symbolic records of variables. But with direct 

substitution, there is the possibility of early 

detection of unfeasible paths with conflicting 

constraints on the initial data. In symbolic testing, 

cyclic sections of the program present a certain 

difficulty, since in this case the number of 

iterations is unknown. The problem can most 

simply be overcome by substituting some pre-

estimated number of iterations. However, in this 

case, the resulting restrictions may not be 

accurate. The second difficulty is related to the 

presence of modules in the program. The latter is 

overcome by the symbolic execution of the 

modules encountered on the given path. The third 

difficulty is related to the symbolic execution of 

data arrays. The fact is that in some cases the 

value of the variable is set only during the 

execution of the program. This difficulty can be 

overcome by introducing additional 

(hypothetical) restrictions corresponding to 

various possible cases. 

 

Generation of structural tests. The 

shortcomings mentioned above are devoid of 

structural testing of programs on specific 

numerical initial data [1-,3]. Test generation 

consists in choosing a set of paths that completely 

cover the program graph, and in determining the 

test data on which these paths are executed. A 

program graph (control graph) is a structural 

model of a program that shows the relationship 

between its elements. The vertices of the graph 

represent the branching and union operators, and 

the arcs represent the data processing and 

transmission operators. The graph is represented 

as a packed adjacency matrix (PAM). The packed 

adjacency matrix A = { aij} of a graph with v 

vertices is a      (v x l) matrix (l is the maximum 

exit degree of the i-th vertex). The degree of entry 

dinp(vi) and exit dout(vi) of some vertex of the 

graph means, respectively, the number of 

incoming and outgoing arcs from the vertices. 

Each row i of the PAM is filled in random order 

with the numbers of vertices that are adjacent to 

vertex i. The representation of graphs in the form 

of PAM has the following advantages over other 

existing representations: for large graphs, the 

number of columns of PAM is much less than the 

number of columns of the corresponding 

adjacency matrix; it is relatively easy to model 

the process of moving along the graph to build 

paths; reduces graph processing time. The test 

criterion is the criterion of branches, where a 

program branch is understood as a certain 

sequence of statements that are executed strictly 

one after another. Thus, a branch is a linear 

section of a program. To construct the minimum 

coverage, the graph is divided into DD-paths 

using the CMS of the original graph. The set of 

vertices with output degree dout(vi)>1, input and 

output vertices are denoted as D-vertices. Then a 

DD-path is a simple path between two D-vertices, 

such that there are no D-vertices within its 

boundaries. Then the cycles and loops are 

determined and the arcs closing them are 

excluded. 

The proposed algorithm for constructing a 

minimum cover (MPOC) of a graph consists of 

the following steps. 

 Stage 1. The vertex i is looked through 

and the adjacent vertex j is determined, the 
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number of which is the maximum among the 

numbers of adjacent vertices, where i Є { l , n -

1;} n is the number of graph vertices. 

 

 
Fig. 1. An example of a program graph 

 

Stage 2. The arc (vi, vj) is viewed. If dinp ( vi ) > 1 

and dout( vj ) >1 , then the arc g(vi,vj) is excluded. 

If dout ( vi ) > 1 and dinp ( vj ) = 1, then the arc h( 

vi, vj) is marked. 

 Step 3. Substitute i = j and repeat steps 

1-2 until j is equal to the number of the final 

(output) vertex. The path is fixed as a sequence of 

values j. 

 Stage 4. If there are no arcs of type g in 

the constructed path, then the last arc of type h is 

excluded. 

 Stage 5. Stages 1–2 are repeated until 

the constructed path contains no arcs of type g 

and h 

 An example of constructing a minimal 

coverage of a program graph. Let the program 

graph shown in Fig. 1. Graph arcs mean a 

sequence of computational program operators, 

graph vertices — branching and union operators. 

After eliminating the closing cycles of arcs (they 

are tested separately), the graph in   Fig. 1 is 

described by the following PAM: 

  

 The first stages of the MPOC 

algorithm give the following results: 

 Stage 1. Set i = 1, j = 2. {1, 2} 

 Stage 2. The arc (vi, vj) is not excluded 

and is not marked. 

 Stage 1. Set i = 2, j = 3. {1, 2, 3} 

 Stage 2. One of the arcs (v2, v3) is 

excluded 

 Stage 1. Set i = 3, j = 10. p1 = {1, 2, 3, 

10} 

 Stage 2. The arc (v3, vI0) is eliminated. 

 Stage 1. Set i = 3, j = 6. 

Stage 2. The arcs (v6, v7), (v8, v9), (v9, 

vI0) are excluded, the arc     

              h(v3, v6)   noted. 

 The procedures of stages 1–2 are 

repeated until the path to the final vertex of the 

graph v10 corresponding to the receipt of the 

calculation result is determined. In this case, the 

first path p1 = { l , 2, 3, 10} is determined after 

three steps. The following steps, repeated until 

there are no arcs of type g and h in the constructed 

path, allow us to determine the following paths: 

                     р2 = {1, 2, 3, 6, 7, 8, 9, 10},  

                     р3 = {1. 2, 3, 4, 6, 7, 8, 9, 

10},  

                     р4 = {1. 2, 3, 4, 6. 7, 8, 9, 

10},  

                     р5 = {1, 2, 3, 4, 5, 10}.  

 To create one path in the worst case, n 

operations are required, and to build the 

minimum number of operations, m operations are 

required, where m is the minimum number of 

paths that cover all branches of the program 

graph. Therefore, the complexity of the 

developed algorithm is 
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O(|v| x |m|) => O(|v|) 

 The developed algorithm is more 

efficient than the algorithm proposed in [5], since 

in this algorithm the vertices are excluded after 

creating a certain path, i.e. additional time 

required. 
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