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Abstract 

This study analyses the changes in the spatio-temporal distribution of vulnerable (VRUs) versus 

protected road user’s (PRUs) collisions hot spots in coastal regions in Tunisia over the period 2006-

2018. It suggests an innovative multi-stage spatial crash hot spot analysis approach that combines the 

spatial analysis and spatio-temporal pattern analysis. First, optimized PRUs and VRUs hot spots Versus 

optimized PRUs and VRUs probable hot spots were used to determine settings that will produce optimal 

hot spot analysis results. Second, kernel density estimation will be used under six temporal scales (a.m. 

rush hours, p.m. rush hours, working days, non-working days, daytime and nighttime PRUs and VRUs 

collisions). The findings indicate that the majority of optimized PRUs and VRUs hot spots were 

portrayed in the northern part of the study area particularly in road junctions between national and 

regional highways. The detected PRUs and VRUs hot spots locations for non-working days are not 

concentrated in comparison with working days. Less PRUs and VRUs hot spots were identified during 

daytime in comparison with nighttime. Finally, the detected PRUs and VRUs hot spots locations for 

a.m. peak hours are not concentrated in comparison with p.m. peak hours. From a policy view point, the 

results could assist public authorities to delineate less hazardous road locations. 

Keywords: Vulnerable Road user’s; Protected Road user’s; Optimized hot spot; Probable hot spot; 

Kernel density estimation. 

1. Introduction 

The transportation system is regarded as one of 

the most complicated and hazardous systems 

people have to deal with on a daily basis. This 

complexity is also clearly apparent in road 

traffic collisions (RTCs) analysis as they simply 

cross the areas of engineering, geography and 

human behavior (Sabel et al. 2005). RTCs are 

rapidly becoming a threat to community health 

and national growth in many developing 

regions since they lead to poverty by causing 

fatalities, injuries, and disabilities. It is 

estimated that 1.2 million persons are killed and 

not less than 50 million injured each year in the 

world in RTCs. It has been forecast that RTCs 

will become the fifth leading cause of mortality 

by 2030 (WHO, 2013). While improvement has 

been reported in high income countries, the 

same cannot be said about low income countries 

with particular focus on the African continent 

which is a signatory to numerous 

developmental programs yet lack the financial 

resources needed to reduce RTCs (Moyer et al. 

2017). All types of road users such as protected 

road user “PRUs” and vulnerable road users 

“VRUs” are likely to be injured or dead in 

RTCs, but there are significant differences in 

death rates among different groups of road 

users. PRUs are those road users who generally 
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have protective shells, restraints and higher 

collision masses compared to other road users 

(Damsere-Derry et al., 2017). Such road users 

are predominantly in enclosed cars and with 

road crashes, enjoy greater safety. Vehicle 

occupants including drivers and passengers are 

classified as PRUs.  VRUs is a term used to 

describe individuals who are the most 

vulnerable in traffic, i.e. those unprotected by an 

outside shield (Damsere-Derry et al., 2017). 

Pedestrians and two-wheeler including cyclists 

and motorcyclists are accordingly considered as 

VRUs. For the enhancement of traffic safety, it 

is essential to understand several properties of 

VRUs and PRUs collisions both temporally and 

spatially. Considerable studies efforts have 

been made on applying various geostatistical 

techniques to RTCs hot spot identification such 

as K-means clustering (De Silva et al., 2018., 

Waldon et al., 2018), Bernoulli spatial model 

(Dai, 2012), Kernel Density Estimation “KDE” 

approach (Blaskez and Celis 2013 ; Takhali et 

al., 2015 ; Shafabakhsh et al., 2017 ; Toran Pour 

et al.,2018 ; Ouni and Belloumi, 2018 ; Colak et 

al., 2018 ; Chen et al., 2018 ; Achu et al., 2019 ; 

Le et al., 2020 ; Nazneen et al., 2020 ; Özcan 

and Küçükönder, 2020 ; Islam and Dinar, 

2021 ; Bajada and Attard, 2021), Network-

based KDE ( Loo and Yao , 2013 ; Xie and Yan, 

2013 ; Mohaymany et al., 2013 ; Benedek et al., 

2016 ; Chen et al., 2018 ; Lee and  Khattak, 

2019 ; Harirforoush and Bellalite, 2019 ), and 

spatial autocorrelation indicators 

(Songchitruksa and Zeng, 2010 ; Gundogdu, 

2010 ; Blaskez and Celis 2013 ; Xie and Yan, 

2013 ; Erdogan et al., 2015 ; Colak et al., 2018 ; 

Lee and  Khattak, 2019 ; Ouni and Belloumi, 

2019, Le et al., 2020). Chen et al, (2018) applied 

a mixture of spatial statistical approach to 

identify hot spots of road traffic crashes in a 

redeveloping area of Shanghai. They found that 

more hot spots occurred in urban area at road 

intersections than on road segments. De Silva et 

al., (2018) applied an epidemiological and built 

environment analysis of RTCs in Sri Lanka. 

They found that all hot spots were in urban 

areas, and most were at intersections. Ouni and 

Belloumi (2019) examined the methodological 

issues of identifying RTCs hot zones and 

probable hot zones in Tunisia. They concluded 

that hot zones and probable hot zones are 

located along highways with a prominent rural 

character.  

RTCs are rarely random in space and 

time due to the underlying environment on 

which RTCs are based, such as highways 

networks, traffic volumes and, essentially, 

human activities, often exhibits discernible 

spatial and temporal patterns (Xie and Yan, 

2013). There were several past studies carried 

out associated with time-related crashes. 

However, their findings were mainly displayed 

by simple graphs, which do not enable us to 

visualize accident clusters varied over space 

and time (Dozza et al., 2016). It is crucial to 

have a deep understanding of both the spatial 

and temporal dimensions simultaneously of 

RTCs (Le et al., 2020). Previous spatio-

temporal analysis studies solved the constraint 

of the time dimension as it can summarize both 

the spatial and temporal patterns (Plug et 

al.,2011; Kaygisiz et al., 2015; Vemulapalli et 

al., 2017; Ouni and Belloumi, 2018; Toran Pour 

et al., 2018; Cheng et al., 2019;  Bil et al., 

2019 ; Achu et al.,  2019; Wang et al., 2019; Le 

et al., 2020; Ouni et al., 2020). Plug et al. 

(2011) investigated the spatio-temporal pattern 

of single and multiple vehicle collisions in 

Western Australia. They found that in non-

metropolitan areas, collisions occur most 

frequently between 3 and 7 p.m. and between 8 

to 11 p.m. in metropolitan areas. Kaygisiz et al. 

(2015) developed a spatio-temporal approach 

for collision prevention in relation to 

behavioral factors in driving in Turkey. Their 

results revealed that hot spots vary in both time 

and space according to vehicle type and the 

direction of traffic flow. Vemulapalli et al. 

(2017) applied GIS-based spatial and temporal 

analysis of aging-involved collisions in Florida. 

They found that aging-involved collisions tend 

to occur during mid-day rather than the peak 

hours. Toran Pour et al. (2018) explored the 

influence of pedestrians’ age and gender on the 

spatio-tempral distribution of pedestrian- 
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vehicle collisions (PVC) in Australia. Results 

revealed that most PVC occur in the central of 

business district during the daytime, and occur 

mostly around hotels, clubs and bars during 

night time. Recently, Bil et al. (2019) applied a 

detailed spatio-temporal approach of traffic 

crash hot spots to the rural parts of primary 

roads in the Czech Republic between 2010 and 

2018. Three temporal behavior types of hot 

spots were identified such as emergence, 

stability and disappearance hot spots. They 

found that the majority of hot spots remained 

stable over time and some hot spots emerge due 

to safety-related negative factors. Wang et al., 

(2019) developed a spatio-temporal workflow 

to assess bicycle-motorized vehicle collisions 

(BMVC) on high-risk locations in Taipei, 

Taiwan. They found that BMVC are more 

likely to aggregate in the winter, on weekdays, 

and during peak hours. Le et al. (2020) applied 

a GIS-based statistical analytic technique to 

explore the temporal-spatial patterns of RTCs 

hot spots in Hanoi varied according the specific 

time intervals of day and seasons. They found 

that collisions with the high severity indices 

often happen in winter. In contrast, collisions 

with the low severity indices often happen in 

spring and fall. Also, the majority of hot spots 

are mainly located at the intersections in the 

center of Hanoi and near the illegal crossroads.  

Develop and implementation of reliable 

countermeasures to promote the safety of road 

users will require not only a better 

understanding of the main crash contributing 

factors but the spatio-temporal patterns of 

VRUs and PRUs as well. Since 1990, Tunisia 

has experienced exponential growth of 

motorization. Its open economic policies mixed 

with underdeveloped road system have resulted 

a massive burden of RTCs. One of the main 

issues facing the Tunisian public authorities is 

exactly where and how to implement 

preventives measures that will have significant 

impact on road safety. Achieving decreasing in 

the number of RTCs is generally a national 

concern. With this motivation, the objective of 

this research is to investigate the spatio-

temporal distribution of RTCs affecting the 

VRUs and PRUs in Tunisia using several 

methods to help create protective 

countermeasures 

at local level over space and time that can 

reduce such traffic collisions. To do so, this 

research suggests an innovative multi-stage 

spatio-temporal crash hot spot analysis 

approach that combines the spatial analysis and 

spatio-temporal pattern analysis. While this 

study identifies findings for specific areas 

within the coastal regions in Tunisia, the 

potential of the methodologies developed 

within this study extends beyond those study 

areas and may be applied to a wide variety of 

regions. 

2. Data and methodology  

 

2.1. The study area and data collection 

The study area centers on the coastal regions of 

Tunisia including the governorates of Nabeul, 

Sousse, Monastir, Mahdia, and Sfax. The 

geographic location of the coastal regions 

extended from the North to the East is one of the 

comparative advantages that offers a variety of 

services through several sectors. The coastal 

zone plays a significant role in Tunisian 

cultural, social, and economic progress. On the 

other hand, the coastal zone is a space of 

extroversion at which Tunisia opens to the 

outside by to the concentration of infrastructure, 

including 9 ports, an oil terminal, and over 6 

international airports (Ouni and Belloumi, 

2019). These activities trigger a need for more 

intense mobility on the coast compared to 

inland areas which explain the increase in the 

motorization of coastal populations compared 

to inland areas. 

VRUs and PRUs collisions records in coastal 

regions in Tunisia over the recent 13 years from 

2006 to 2018 collected from National 

Observatory for Road Safety (NORS) in 

Tunisia were used in this study. The study is 

limited to PRUs and VRUs collisions which 

resulted in casualties. The collected collisions 

data include the route name identical as GIS 
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layer of highways for locating both PRUs and 

VRUs collisions on highway map using linear 

referencing tool available in ArcGIS 10.6. The 

locations of PRUs and VRUs collisions were 

mapped with World Geodetic System 1984 

(WGS84) projection, a similar projection to the 

highways data. Consequently, 4090 PRUs and 

3600 VRUs collisions records within the survey 

period were used for this study. Figure 1 shows 

that PRUs and VRUs collisions, injuries and 

fatalities were oriented in a Northwesterly-

Southwesterly trend and stretch longest side of 

the study area. The majority of previous 

scientific studies are based on hypothetical or 

selected highways rather than the entire road 

network (Ouni and Belloumi, 2019). This study 

differs completely from those studies by using a 

detailed geocoded road network consists of 

approximately 3720 km of numbered 

road, divided in about 130 km of a Freeway, 

834 Km of National highways (NH), 1800 Km 

of Regional highways (RH), and 956 Km of 

Local highways (LH). 

2.2. Methodology 

Optimized hot spots analysis 

The optimized hot spot analysis tool 

distinguishes statistically significant spatial 

clusters of high values (hot spots) and low 

values (cold spots) from the given incident point 

or weighted data to determine settings that will 

produce optimal hot spot analysis results. It 

automatically aggregates incident data, 

identifies an appropriate scale of analysis, and 

corrects for both multiple testing and spatial 

dependence using the False Discovery Rate 

(FDR) correction method (ESRI – ArcGIS Pro, 

2021). The tool uses the aggregation method to 

count the collisions within fishnet grids. 

The optimized hot spot analysis tool uses the 

Getis-Ord Gi* statistics. Successfully applied in 

several other spatial RTCs analysis (Gundogdu, 

2010; Songchitruksa and Zeng, 2010; Erdogan 

et al., 2015; Ouni and Belloumi, 2019), the 

Getis-Ord Gi* first introduced by Getis and Ord 

(1992) is estimated as follow:  

 

Gi*= 
∑ wijxj−X̅ ∑ wij

n
j=1

n
j=1

S√
n ∑ wij

2−(∑ wij
n
j=1 )2n

j=1

n−1

 , Ɐ i ≠j                                                                                                    (1) 
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∑ xj

n
j=1

n
                                                                                                                                    (2) 

S = √
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2n
j=1

n
− (X̅2)                                                                                                                (3) 

Where xj is the attribute value for feature 𝑗, wij 

is the spatial weight between feature 𝑖 and j, and 

𝑛 is to the total number of features. Gi* returns 

z-score and p-value which are used to estimate 

the statistical significance of spatial 

autocorrelation. The resulting map provides the 

z-scores and p-values for each PRUs and VRUs 

collisions dataset aggregated in a fishnet grid. A 

z-score of ± 1.65, ± 1.96 and ± 2.58 represent 

the optimized hot spot with 90%, 95% and 99% 

confidence levels respectively. A feature’s high 

z-scores associated with small p-values indicate 

spatial clustering of high values. A low 

(negative) z-scores associated with small p-

values indicate a spatial aggregation of low 

values. When more z-scores are high (or low), 

the aggregation is more intense. A z-score near 

zero indicates the absence of spatial aggregation 

(Ouni and Belloumi, 2019). The probability 

value of a being a hot spot must be greater than 

the threshold z-score value of 1.645 obtained 

from a normal distribution at 95% confidence 

level (Gundogdu, 2010; Ouni and Belloumi, 

2019). Therefore, the threshold z-score value 

between 1.002 and 1.645 is chosen to highlight 

the optimized probable hot spots (Ouni and 

Belloumi, 2019). 

 

https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm#ESRI_SECTION1_2C5DFC8106F84F988982CABAEDBF1440
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm#ESRI_SECTION1_2C5DFC8106F84F988982CABAEDBF1440
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KDE analysis 

KDE is one of the most popular and well-

established non-parametric approach which has 

been widely used to characterize the pattern in 

terms of the first-order properties of spatial data 

(Mohaymany et al., 2013). Taking that 

approach is the fact that point pattern has a 

density at any location within the study area not 

only at the location where collision occurs or is 

displayed (Ouni and Belloumi, 2018). This 

approach can provide researchers with a 

continuous and smooth surface of spatial 

density estimations by weighting nearby points 

more than far ones based on a particular kernel 

function. One common mathematical function 

used is given below: 

f̂(x, y) =  
1

nh2
∑ K (

di

h
)n

i=1                                                                                                                (4) 

Where f̂(x, y) is the density estimation at 

location (x,y) , n is the number of collisions, h 

is the smoothing parameter or bandwidth which 

is always larger than 0 (only points within 

bandwidth h are used to estimate f̂(x, y)), K is 

the kernel function, and di represents the 

distance between the location (x; y) and the 

location of the ith collision. There are a wide 

variety of kernel functions, such as Gaussian, 

Quartic, Negative exponential, Triangular and 

Epanichnekov functions (Ouni et al, 2020). In 

this study, the Quartic kernel function available 

in ArcGIS 10.6 is applied. The specific form of 

the Quartic kernel function is: 

k(di
h

) =  K (1 −
di

2

h2)       when                  0 < di  ≤ h                                                                        (5)                                                               

 

k(di
h

) =  0             when                   di > h                                                                              (6)                   

in equation (5), K is the kernel function, h is the 

bandwidth and di represent the distance 

between the location (x; y) and the location of 

the ith collision. in equation (6), K is often a 

scaling factor and its main function is to ensure 

the total volume under Quartic curve is 1. The 

common values used for K are 3/π and 3/4. 

Several studies suggest that the accuracy of 

kernel function k is less important than the 

impact of bandwidth h. However, the density 

pattern well certainly be affected by the choice 

of bandwidth. A very small bandwidth will 

produce under-smoothed density map. On the 

other hand, a large bandwidth 

will over smooth the density estimation, so we 

risk losing information, which will exhibit less 

variability between areas. Therefore, after 

several tests, a bandwidth of 3000 meters and 

cell size of 400 meters was selected for the 

density analysis for the studied period. In this 

paper, the 13-years from 2006 to 2018 PRUs 

and VRUs collisions data were divided 

according to six temporal scales (daytime (5 

a.m. to 5 p.m.), nighttime (5 p.m. to 5 a.m.), a.m. 

rush hours (7 a.m. to 9 a.m.), p.m. rush hours 

(5p.m. to 7 p.m.), working days (Monday to 

Friday) and non-working days (Saturday and 

Sunday)). Then the density of each subset is 

analyzed using KDE approach. The hot spots 

for all these points patterns could be easily 

defined via visual KDE surfaces. 

3. Results and discussion 

 

3.1. Optimized PRUs and VRUs hot 

spots analysis 

Figure 1 delineates the optimized PRUs and 

VRUs hot spots and probables hot spots. The 

resulting map creates a new output feature class 

with a z-score and p-value for each PRUs and 

VRUs collisions dataset aggregated in a fishnet 

grid. The author can notice that 144 and 91 

optimized PRUs and VRUs statistically 

significant hot spots respectively were detected 

with 90%, 95% and 99% confidence levels. It is 

obvious that optimized PRUs and VRUs hot 

spots are not randomly distributed. The majority 

of optimized PRUs and VRUs hot spots were 

portrayed in the northern part of the study area 
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especially in the governorates of Nabeul and 

Sousse. Absolutely no optimized PRUs and 

VRUs hot spots were found in the governorate 

of Monastir, and Mahdia. Since Gi* z-score can 

be measured for each fishnet grid, it can be used 

as a dangerousness index. The riskiest grid 

would be the grid with the largest z-score value, 

and the least risky grid would be the grid with 

the smallest z-score value. This approach 

actually zooms into locations which demand 

further investigation. The outputs showed that 

there were 62 grids and 85 grids with Gi* z-

score > 2.58 and Gi* p-values < 0.01 for PRUs 

and VRUs respectively. It indicates that these 

grids were the riskiest locations with the 

statistical meaning at the confidence level of 

99%. These locations were ranked in ascending 

order according to a dangerousness index and 

displayed visually on the map (figure 2.b and 

2.d). Closer examination of the riskiest PRUs 

and VRUs hot spots reveals some outstanding 

spatial clusters of crashes covering specific 

locations. Since each map has identified distinct 

and similar clustering patterns. Several 

important spatial features are discernible. The 

majority of these hot spots were portrayed in the 

governorates of Nabeul. All these hot spots are 

located along national and regional highways, 

more precisely in NH1, RH28, RH29, RH42, 

RH43, RH44 where more rural activities are 

taking place. These findings have been assigned 

to several explanations, such as higher speed 

limits, aggressive driving behaviors, lower rate 

of seat belt use and bad road surface conditions 

in rural area as compared to urban area, which 

suggests that a priority for traffic safety 

enhancement should be put along these rural hot 

spots. A rather significant disparity was 

observed between the hot spots that occur on 

regional highways with the rest of roads. Not 

surprisingly, the highlighted governorate 

overlaps the more densely regional highways in 

Tunisia. The highest numbers of PRUs and 

VRUs hot spots are observed at the central part 

of the region of Nabeul particularly in road 

junctions between NH1 and RH28 and between 

NH1 and RH42 which link many of the 

residential areas to these highways. A finding 

consistent with (Truong and Somenahalli, 2011; 

De Silva et al., 2018) which reported that hot 

spots are mainly located at intersections 

between the major roads. In our case, the 

threshold z-score value between 1.002 and 

1.645 at 95% confidence level is chosen to 

highlight the optimized probable hot spots. A 

probable hot spot refers to a location that that 

are not a hotspot yet but have high potential for 

being hotspot in near future. Thus, PRUs and 

VRUs collisions can be anticipated easily. By 

running optimized hot spot analysis, a more 

distinctive pattern of optimized PRUs and 

VRUs probables hot spots could be detected.  

PRUs probable hot spots are identified 

everywhere in the region, mainly in the north 

and southwestern part of the region. Some 

VRUs probable hot spots were also portrayed in 

the central part of the region in the vicinity of 

the governorate of Sousse. 
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           (a)                                                                    (b) 

 
           (c)                                                                    (d) 

 

Figure 1 : (a) Optimized PRUs hot spots and probable hot spots, (b) Zoomed view of the riskiest PRUs 

hot spots, (c) Optimized VRUs hot spots and probable hot spots, (d) Zoomed view of the riskiest VRUs 

hotspots 

 

3.2. Spatio-temporal pattern of PRUs 

and VRUs hot spots 

For the purpose of analysis, PRUs collisions 

were categorized into: a.m. rush hours (n = 

412); p.m. rush hours (n = 673); working days 

(n = 2823); non-working days (n = 1267); 

daytime (n = 2074) and nighttime PRUs 

collisions (n = 2016). VRUs collisions were 

categorized into: a.m. rush hours (n = 338); p.m. 

rush hours (n = 685); working days (n = 2590); 

non-working days (n = 1010); (5) daytime (n = 
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1772) and nighttime VRUs collisions (n = 

1828).  

Figures 2 and 3 provides insight into the visual 

spatial pattern of daytime, nighttime, a.m. rush 

hours, p.m. rush hours, working days and non-

working days PRUs and VRUs collisions in 

coastal regions in Tunisia. As shown in figures 

4 and 5, PRUs and VRUs collisions appear to 

exhibit similar spatial patterns. It is clear that 

varied details are displayed at different temporal 

scales. Assessing daytime and nighttime hot 

spots, there were clearly some outstanding 

spatial clusters covering specific locations. 

Substantial differences can be noticed between 

daytime and nighttime hot spots. Less PRUs and 

VRUs hot spots were identified during daytime. 

This is likely a consequence of reduced 

visibility under dim lighting, higher vehicular 

speed under lighter traffic flows, and possible 

negligence or inattentiveness that occur 

during nighttime. Further, dark conditions may 

also lead to longer response times by emergency 

crews. These findings were consistent with 

(Wood et al.,2012) which found that pedestrian 

collisions are higher during nighttime than in 

the daytime due to the reduced visibility of 

pedestrians and the degraded ability of drivers 

in recognizing pedestrians crossing the road. 

During nighttime, PRUs and VRUs hot spots 

are identified everywhere in the region, mainly 

in the northern part and in lateral highways in 

the southern part especially in NH-1 and NH-2 

which link the region of Sfax to the region of 

Gabes and Skhira respectively. The link Sfax-

Skhira-Gabes host heavy traffic flow generated 

by the phospho-chemical activity between these 

areas.  

Assessing a.m. and p.m. peak hours’ hot spots 

within a broader geographic area, both 

similarities and discrepancies were observed. 

The most important distinction between them is 

that the detected hot spots locations for a.m. 

peak hours are not concentrated in comparison 

with p.m. peak hours. These findings followed 

(Ouni and Belloumi, 2018; Ouni et al.,2020) 

which reported an increased risk of collisions 

during evening peak hours. These results are 

reasonable. This is likely a consequence of 

stress caused by driving in congested road 

during p.m. peak hours. Several p.m. peak 

hours’ hot spots are centered within urban and 

rural areas of both Nabeul, Sousse and Sfax 

governorates as well as along the major roads 

and only a few are located in Monastir. No hot 

spots were detected in the region of Mahdia. 
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    (a)                                              (b)                                             (c)  

                                         
(d)                                              (e)                                            (f)  

 

Figure 2 : KDE results of VRUs collisions : (a) Daytime, (b) Nightime, (c)  a.m rush hours, (d) p.m 

rush hours, (e) Working days, (f) Non-working days 
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(a)                                              (b)                                             (c)  

                                         
                     (d)                                              (e)                                             (f)  

 

 

Figure 3 : KDE results of PRUs collisions : (a) Daytime, (b) Nighttime, (c)  a.m. rush hours, (d) p.m. 

rush hours, (e) Working days, (f) Non-working days 
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This can be explained by the fact that Mahdia 

has remained isolated in relation to the 

bordering regions and the transit axes NH-1. 

Also, no freeways serve Mahdia directly.  The 

detected hot spots locations for non-working 

days are not concentrated in comparison with 

working days. This result is more conforming to 

daily patterning of activities. This result could 

lead also to particular preferences regarding 

people who do not drive in non-working days. 

During working days, remarkable PRUs and 

VRUs hot spots locations were portrayed in the 

region of Nabeul especially in RH-26, RH-27 

and RH-28, in the region of Sousse especially in 

NH-1, NH-6 and LH-819 and in the region of 

Sfax particularly in NH-2 and in road 

junctions between NH1 and RH-124 and 

between NH-1 and LH-918. These roads 

accommodate huge traffic volumes travelling at 

high speeds resulting in a high risk of PRUs 

collisions occurrence. The NH-1 is a very 

prominent road which other regional roads are 

connected to and links all the coastal regions of 

Tunisia. 

After the visual assessment of maps of PRUs 

and VRUs hot spots, it can be noticed that some 

hot spots were portrayed repeatedly in the same 

location for each subtype period. Such kinds of 

results are significant as it may suggest that it is 

possible to predict some spatio-temporal trends 

to the PRUs and VRUs collisions distribution. 

 

4. Conclusions and future research 

directions 

This study investigates the changes in the 

spatio-temporal distribution of PRUs versus 

VRUs collisions hot spots in coastal regions in 

Tunisia over a recent 13 years from 2006 to 

2018. The study findings not only highlight the 

risky collision areas and time periods, but can 

also promote to developing more reliable PRUs 

and VRUs transportation plans and policies. 

The main findings are as follow: (1) the 

majority of optimized PRUs and VRUs hot 

spots were portrayed in the northern part of the 

study area especially in the governorates of 

Nabeul and Sousse particularly in road 

junctions between national and regional 

highways which link many of the residential 

areas. (2)   the detected PRUs and VRUs hot 

spots locations for non-working days are not 

concentrated in comparison with working days. 

(4) less PRUs and VRUs hot spots were 

identified during daytime in comparison with 

nighttime.  (5) the detected PRUs and VRUs hot 

spots locations for a.m. peak hours are not 

concentrated in comparison with p.m. peak 

hours. 

From a policy viewpoint, exploratory analyses 

such as the present effort provide key details 

that could be used by planners and decision-

makers to build educational agendas aimed at 

promoting safety and well-being for PRUs and 

VRUs. Specifically, the type of data, maps, 

analyses, and insights presented in this study 

suggests recommendations in terms of 

enforcement, education, and engineering. 

Typically, PRUs and VRUs injury prevention 

programs range from global programs focused 

on developing education and awareness 

campaigns to reduce unsafe behavior on the 

roads, to updates of local programs intended to 

correct an engineering defect judged 

responsible for an increased frequency of 

collisions at a specific location. Other 

hazardous location-specific treatments include 

traffic calming, reducing and controlling the 

speed limits, roadside safety messaging, and 

traffic law enforcement (Balakrishnan et al., 

2019). Undoubtedly, the surrounding land uses 

are important as well as these will certainly 

specify the nature, magnitude, and severity of 

conflict between VRUs and motorized traffic 

users. Decision-makers are striving to provide 

alternatives to ensure a better cohabitation 

between all road users. 

It is important to bring to light some 

shortcomings in the study that could have an un-

intended impact on the findings. Our research 

data were restricted to coastal regions in 

Tunisia. An obvious extension is always 

important to include a larger sized database 

including additional regions. This research 

could also gain by addressing a fine-grained 

spatial approach that looks into interactions 
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between land use, VRUs, and PRUs. Despite the 

limitations mentioned above, this research 

represents a crucial contribution, as to the best 

of the author’s knowledge, this reflects one of 

the first attempts to adopt a space-time 

analytical approach in investigating hot spots of 

VRUs and PRUs collisions in coastal regions in 

Tunisia. Such approach can raise awareness of 

the need for better monitoring and development 

of future road-safety-related interventions. This 

is likely to provide decision-makers with 

important insights on improving road safety 

situation for PRUs and VRUs. 
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