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Abstract: 

Alzheimer's disease (AD) is one of the most common public health issues the world is facing today. This disease 

has a high prevalence primarily in the elderly accompanying memory loss and cognitive decline. At present, 

there is no specific treatment for this disease. Early and accurate diagnosis of AD become a challenging task 

which many authors have developed numerous computerized automatic diagnosis systems utilizing 

neuroimaging and other clinical data. These studies have identified the importance of structural differences in 

brain regions such as the entorhinal cortex, hippocampi, and other brain areas between Alzheimer-affected brain 

and a healthy brain. Magnetic Resonance Imaging (MRI) scanners have proven the potentiality to study AD-

related brain structural variations, consequently, structural MR imaging techniques have been exploited as a 

significant diagnostic tool when reporting a cognitive decline. The researchers showed promising results not 

only for excluding non-neurodegeneration causes, but rather to accurately identify AD neurodegenerations. 

Machine Learning (ML) and subfield deep learning (DL) has become prominent techniques for detecting AD 

at their early stages. Here, brief literature of the previously adopted AD diagnosis techniques will be reviewed, 

including traditional diagnosis methods, and advancing to the relevant modern employment of DL in AD 

diagnosis. 

 

 

INDEX TERMS: Alzheimer’s disease, Beta Amyloids (Aβ), neuroimaging, Structural MRI, Deep Learning, 

convolution neural network. 

1 INTRODUCTION: 

Dementia is a broader term of brain disease that 

causes a decline in the person's ability to think, 

remember, and affects his behavioral abilities in his 

daily life. Dementia ranges in severity from the 

mildest stage, when it just begins to affect a person's 

ability to function, to the most severe stage, when the 

person is completely reliant on others for his most 

basic daily activities [1] . 

The most common type of dementia is 

Alzheimer's disease (AD), an age-related 

neurodegenerative disorder that affects the brain, 

resulting in cells’ death and overall brain volume 

loss. This leads to cognitive mental problems such as 

memory loss and confusion; which is one of the most 

prominent characteristics in Alzheimer's patients [2]. 

Beta amyloids and tau tangles, abnormal protein 

deposits in the brain, cause AD by damaging brain 

cells in the memory and mental functions areas. 

When more neurons die, entire brain areas shrink, 

resulting in cognitive function issues, which are the 

primary symptoms of AD [3]. As the disease 
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progresses The Damage becomes more diffuse, and 

the brain shrinks significantly. Because beta-amyloid 

grows up over time, it will take more than ten years 

for a patient to notice any symptoms of the disease 

[4]. According to scientists, the causes seem to be 

related to a combination of environmental and 

genetic factors. The most common factors associated 

with the risk of developing AD are age and some 

environmental risk factors including smoking, 

strokes, heart disease, depression, arthritis, and 

diabetes. A study on over 3000 cases defined a score 

for a healthy lifestyle including nonsmoking, 

physical activity, low alcohol consumption, high 

quality dietary, and engagement in cognitive 

activities. The study concluded that a high score 

healthy lifestyle is associated with a lower risk factor 

of AD [5]. Figure 1 explains the protein deposits in 

AD compared to a healthy brain. 

 

Figure 1 Comparison between a Normal brain and AD brain showing amyloid plaques.  

The number of reported AD cases, which contributes 

more than 60% to all dementia cases, is elevating. AD 

is considered the sixth leading cause of death in the 

United States and the fifth-leading cause of death in 

adults older than 65 years [6]. Based on the updated 

key facts posted on the World Health Organization 

(WHO) website, around 50 million people have a 

form of dementia, with nearly 10 million new cases 

are reported each year [7]. In 2018, more than 

122,000 people died from AD, an increase of 146% 

from the year 2000 .an estimated 6.3 million 

American adults over 65 years are living with AD In 

2021, with the number expected to more than double 

by the year 2050 to approximately 14 million 

individuals. The total healthcare costs for the 

treatment of AD are expected to be $355 billion in 

2021, the costs expected to rise to more than $1.1 

trillion by 2050 [5] [6]. 

Because of AD affected brain suffers from 

degradation for as long as a decade or more before 

showing any evident symptoms. This fact encouraged 

researchers to start a detailed investigation on the 

progression of the disease through the visualized 

pathological variations that emerged across the 

demented brain using different types of imaging 

techniques. These investigations aimed to predict the 

disease's presence before showing its advanced 

symptoms. Early and accurate detection helps to slow 

down the disease progression and reduce the costs of 

treatment because it enables people with dementia 

and their families to better prepare for the progression 

of the disease  

Advanced neuroimaging techniques, such as 

magnetic resonance imaging (MRI), Computed 

Tomography (CT), and positron emission 

tomography (PET), have been developed and used to 

identify structural and molecular biomarkers 
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associated with AD, this techniques coupled with 

advanced computational machine learning methods, 

have led to accurate prediction of the presence of the 

disease. MRI is a technique that creates a detailed 3D 

image of the brain employing magnetic fields and 

radio waves. Brain MR Images can identify structural 

atrophic changes in the brain [8] . Figure 2 shows the 

three MRI planes (taken from the ADNI* datasets). 

 

Figure 2: three views of a 3D T1-weighted MR image Axial, Coronal and Sagittal. 

Machine Learning (ML) has become one of the most 

exceptional technologies in the last decade. ML is the 

act of the computer doing a task without being 

explicitly programmed. Consequently; Machine 

Learning (ML) has been widely used in different 

medical fields. On the other hand, Deep Learning 

(DL) techniques are a broader family of ML has 

emerged as one of the most promising tools for AD 

diagnosis. Discriminative features of the disease can 

be extracted automatically from raw data using DL 

models. The most advanced DL architectures are 

designed to work with real-world images for image 

segmentation, Image regression and classification, 

and other visual imagery analysis. These models 

require a large amount of training data such as brain 

MR images to learn the patterns and features 

embedded in these images. The benefit of DL models 

is that learned features are directly extracted from 

input images, eliminating the need for manually 

generated features [9], [10]. In this study, the relevant 

studies that examine AD and use MRI data, ML and 

DL techniques with various AD datasets are 

reviewed. 

This paper is organized as follows: AD 

structural biomarkers are described in section 2, MRI 

as    neuroimaging techniques of AD are introduced 

in Section 3, the datasets used in AD diagnosis are 

described in Section4, Section 5, offers a brief review 

of different classification methods that have been 

reported in the literature from ML towards DL for 

this problem In Section 6, the conclusion is presented. 

2 ALZHEIMER’S DISEASE  BIOMARKERS: 

Biomarkers, also known as "biological markers", are 

medical key features that can accurately measure a 

biological state of a disease. There are numerous of 

AD biomarkers: genetic, biochemical and 

neuroimaging biomarkers that related to structure and 

other to the function of the brain [11]  [12]  . In this 

study the structural biomarkers captures by structural 

MRI are discuss briefly. 

2.1 Brain Atrophy: 

The brain consists of 3 main tissues visible in a MR 

image: 

1. White Matter (WM), high voxel 

intensity (white color). 

2. Gray Matter (GM), medium voxel 

intensity (gray color). 

3. Cerebrospinal Fluid (CSF), low voxel 

intensity (black color). 

Neurodegeneration in both GM and WM tissues 

occur as an outcome of normal aging, while brain 

atrophy rate in GM and WM is increased in AD 

neurodegeneration [13]–[16]. As AD progresses, 

more brain cells die and the brain volume is 

significantly reduced. In Structural MRI, the brain 

a 

 Axial  Coronal   Sagittal   
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neurodegeneration and volume loss are crystal clear, 

but it is challenging to differentiate normal aging 

from AD. Figure below shows a healthy brain 

compared to a brain with AD. 

 

Figure 3 Brain atrophy comparison in normal aging against AD. 

2.2 Hippocampal Atrophy: 

Memory impairment symptoms is a must when 

diagnosing AD, the hippocampus is the brain area 

that plays a key role in forming new memories. 

Several studies show that the hippocampus, and the 

entorhinal cortex region are the most vulnerable 

Regions of Interest (ROIs) with respect to AD 

pathology. In particular, hippocampal atrophy is 

known to occur early in the course of AD on a spatial 

scale large enough to be detectable with structural 

MR images, also the hippocampal volume loss plays 

a key role in distinguishing very mild AD from 

healthy Aging [13], [14].  

Other subcortical regions, especially in the 

Medial Temporal Lobe (MTL) also suffer from 

atrophy, but at lower rates than the hippocampal 

atrophy. Basically, AD progression causes more 

neurodegeneration across different brain regions, 

researchers are still studying the patterns that 

differentiate AD from normal aging and other 

medical diseases that causes brain atrophy 

2.3 Ventricular Enlargement: 

The ventricles are four interconnected cavities 

distributed throughout the brain that produce and 

hold the CSF within. They found that when ventricles 

enlarge, the surrounding brain tissue dies. Lateral 

ventricular enlargement remains one of the most 

robust brain abnormalities biomarkers in AD, and 

even though ventricles enlarge with normal aging, 

several studies have shown the correlation between 

the enlargement of ventricles and progression of AD 

[16]. Figure 4 show hippocampus atrophy (colored in 

light red) and lateral ventricles enlargement (colored 

in light blue) in AD patient compared to a CN subject 

both at age 80 years old. 

AGE: 60 AGE: 80 
CN AD CN AD 
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Figure 4 Hippocampal atrophy and Ventricular enlargement between normal aging and AD 

Axial 

Sagittal 

Coronal 

AD CN 

3D view 
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3 NEUROIMAGING TECHNIQUES: 

Studies have shown the strength of imaging 

biomarkers as a crucial information about AD, they 

concluded that the use of neuroimaging techniques 

have the ability to detect pathological brain changes. 

There are two types of imaging techniques: structural 

imaging and functional imaging. Structural imaging 

provides information on the structure of the brain, 

including neurons, synapses, glial cells, and other 

structures. Functional imaging provides information 

about the brain's activities. Both functional and 

structural imaging techniques have been exploited as 

a significant diagnostic tool when reporting cognitive 

decline, they showed promising results not only for 

excluding non-neurodegeneration causes, but rather 

to accurately identify AD neurodegenerations [8], 

[12], [17], [18]. 

Commonly used modalities include structural 

MRI and Computed Tomography (CT) to detect AD-

related structural changes, while functional MRI and 

Positron Emission Tomography (PET) are being used 

to detect functional abnormalities in the brain. This 

study will focuses on the structural MRI as a 

neuroimaging technique and discuss the studies 

which exploited to AD classification. 

3.1.1 Magnetic Resonance Imaging 

MRI was first used in 1977 as an imaging technique 

in radiology to obtain two- and three-dimensional 

images of the body. MRI functions without the 

damaging X-Ray used in CT scans or the ionizing 

radiation used in PET, MRI depends merely on 

magnetic fields, magnetic field gradients and radio 

waves. MRI produces high contrast images of tissues 

such as bones, muscles, brain tissues, fat and body 

fluids. MRI is based principally upon sensitivity to 

the existence and properties of water, specifically the 

Hydrogen atoms, which makes up 70% to 90% of 

most body tissues.  Most diseases alter water amount 

and properties within the human body making MRI 

scanners a truly powerful diagnostic tool [13], [19], 

[20]. 

The most important Hydrogen properties are 

Proton Density (PD), and two characteristics called 

T1 and T2 relaxation times. PD is the amount of 

hydrogen atoms in a volume; for example, CSF and 

blood have higher PD than bone. Relaxation times 

describe how long it takes for a tissue to get back to 

its original state after being altered by MR. These 

three terms basically define how an MRI scanner 

determines the contrast for different tissue types. 

Figure below explains the difference between a PD-, 

T1- and T2-weighted MR images of the brain. 

 

Figure 5 different weighting in MRI scans 

As shown in the figure above, the high tissue contrast 

offered by T1-weighted MRI enables accurate 

structural neuroimaging analysis. Different 

weighting in MRI scans have its own weaknesses and 

strengths, but T1-weighted shows excellent contrast 

between different brain tissues. Thus, it is commonly 

T1-Weighted T2-Weighted PD-Weighted 
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used as a diagnostic tool whenever the brain structure 

evaluation is needed. 

Structural MRI provides high resolution 3D 

image as a series of 2D slices, instead of a 2D pixel, 

a single element in a 3D image is called a Voxel. 

Unlike pixels, voxel can be seen from 3 different 

views; Axial, Sagittal and Coronal. 

4 DATASETS: 

This section explains the dataset that often utilized in 

AD classification. 

4.1 Alzheimer Disease Neuroimaging 

Initiative (ADNI): 

ADNI database (adni.loni.usc.edu) was the first 

source of brain MR images and the clinical data used 

in evaluating the proposed method. ADNI has been 

running since 2004, and funds will last until 2021. In 

several studies ADNI was previously utilised to 

categories AD and understand the transformation to 

AD. The primary goal of ADNI is to test whether 

serial MRI, PET scans, other biological markers, 

clinical and neuropsychological assessment can track 

and diagnose the early stages of AD progression. The 

dataset also contains metadata for each brain scan, 

including gender, age, education, and diagnosis. 

Determination of sensitive and specific markers of 

early AD progression intends to aid researchers and 

clinicians in developing new treatments, monitoring 

their effectiveness, and lessening the time and cost of 

clinical trials. 

In the ADNI1 dataset, there are 2033 MRI 

session distribution in three diagnostic groups: AD, 

CN, and MCI. AD group refers to the patients with 

Alzheimer's diagnosis, CN group refers to normal 

cognitive status subjects that show no sign of AD. 

MCI group references patients that can take care of 

their daily activities with mild damage in other 

cognitive areas. 

4.2 Open Access Series of Imaging Studies 

(OASIS): 

OASIS is an open-sourced project that aims to make 

neuroimaging datasets freely available for the 

scientific community. The information provided by 

OASIS covers a wide demographic, with thousands 

of people showing both normal aging and AD. The 

OASIS project provides three large datasets with scan 

data from 1664 patients, including 2975 MRI 

sessions and 1608 PET sessions. OASIS-1, OASIS-

2, and OASIS-3 are the three datasets provided. The 

data provided by OASIS was partitioned and sorted 

into Yes and No instances based on medical 

diagnostics linked to each patient that data was 

collected from. No-instances were classified as those 

patients who had received a diagnosis of 

”Cognitively Normal” and the rest of the patients 

were classified as Yes-instances. These datasets are 

widely used by researchers in many works to studies 

the dementia in older adult. 

4.3 National health and aging trends study: 

In response to the growing number of cases, the 

Alzheimer's disease Centers funded by the National 

Institute on Aging established the National 

Alzheimer's Coordinating Center (NACC) in 1999, 

with the goal of facilitating research initiatives. The 

Alzheimer's Disease Genetics Consortium and the 

National Centralized Repository for Alzheimer's 

disease and Related Dementias, in collaboration with 

NACC, provided invaluable resources for the 

exploratory and explanatory phases of the research. 

5 LITERATURE REVIEW: 

This section introduces a brief overview of various 

automated MRI classification techniques. First, 

traditional feature extraction and classification 

methods based on classical ML techniques are 

discussed in detail. Then, this section migrates to 

explore different DL models utilized in automatic 

MRI classification for AD diagnosis. 

5.1 General Overview of Manual Methods: 

According to features extraction methods from brain 

MR images, the methods summarized below are old-

fashioned manual feature extraction methods. 

(Laakso et al. [21], 1995) used atlases of the 

human brain to define the boundaries of both 

amygdala, hippocampus, and the frontal lobe. 

Measured volumes was normalized by dividing on 

the whole brain volume. They performed Analysis of 

file:///E:/New%20folder/AUTOMATIC%20DIAGNOSIS%20FINAL%204.docx
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Variance (ANOVA) to differentiate between (32) 

AD-probable patients and (16) normal controls. 

ANOVA is a statistical method to find the relation 

between a category and a numerical variable. 

(Frisoni et al. [22], 1996) performed linear 

measurements like diameters, heights, widths, and 

distances of many brain structures. They performed 

discriminant analysis to identify measures 

independently contributing to discrimination of (46) 

AD patients from (31) healthy subjects. They 

concluded that linear measures of hippocampal 

atrophy contributed the most to the diagnosis of AD. 

(Wolf et al. [23], 2001) exploited the 

hippocampal head, body, and total volumetric 

measures to predict the cognitive dysfunction 

according to Clinical Dementia Rating (CDR) of (39) 

subjects. They conclude that hippocampal atrophy is 

sensitive to detect subjects at risk for AD. 

The before mentioned studies and the like 

suffered from three major points: 

• No big cohorts were available at the 

time, leading to small study populations 

with several subjects less than (100). 

Due to this, comparison with these 

studies is not applicable. 

• Manual boundary definition and 

measurement techniques require a great 

deal of time and experience, making 

them inefficient in the diagnostic field. 

• Manual feature selection is impractical 

because of the human error and inability 

to be unbiased. 

5.2 Automated Feature Extraction and 

Classical ML Classification techniques: 

Researchers had to discover new methodologies to 

automate feature extraction within an MR image. In 

recent years, many automated and semi-automated 

feature extraction techniques have been developed 

and enhanced for analyzing structural MR images. 

Software packages such as FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/), FSL 

(http://fsl.fmrib.ox.ac.uk/), and Statistical Parametric 

Mapping (SPM) (http://www.fil.ion.ucl.ac.uk/spm/) 

provide powerful tools for analyzing MRI data. These 

extracted features can be classified based on their 

type. Voxel-based features represent statistics of 

voxel distributions on major brain tissues such as 

WM, GM, and CSF [24]. 

(Frisoni et al. [25], 2002), and (Karas et al. [26], 

2003) used SPM99 to segment the brain into GM, 

WM, and CSF density maps. Then, segmented GM 

maps are registered to a template, smoothed out, and 

voxel-by-voxel statistically compared in-between 

groups to visualize GM atrophy between AD patients 

and CN subjects. Both studies concluded that the 

significant GM loss occurred in the medial temporal 

lobe structures, especially in the hippocampal 

regions. 

(Klöppel et al. [27], 2008) used the newer 

version SPM5 to process the MR images and produce 

GM density maps. They utilized SVM to 

automatically define significant GM voxels 

contributing to the discrimination of (67) AD patients 

from (91) CN subjects. Their study concluded that 

supervised ML techniques can aid the clinical 

diagnosis of AD using MR images. 

Studies that utilized full GM density maps 

suffered from [28], [29]: 

• Extremely high dimensionality, number 

of features is the number of voxels 

within a density map. 

• Extremely prone to registration error 

since these methods compares voxel-

by-voxel for a discrimination task. 

Other studies performed dimensionality 

reduction to decrease the number of features using 

various techniques. 

(Vemuri et al. [30], 2008) down-sampled GM 

density maps from an isotropic voxel size of (1mm3) 

to (8mm3) by simple averaging. This step reduced the 

GM maps by (8) times, lowering its voxel count. 

Vemuri et al. performed an additional feature 

selection step by ensuring a condition of large 

margins when using a linear SVM classifier. This 

study was performed on (190) AD patients and (190) 

CN subjects. It concluded that the use of SVM with 

feature reduction and selection can generalize well to 

new data. 

http://surfer.nmr.mgh.harvard.edu/
http://fsl.fmrib.ox.ac.uk/
http://www.fil.ion.ucl.ac.uk/spm/
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(Baglat et al.[31],2020) Applied different 

machine learning techniques such as Logistic 

Regression, Random Forest, Decision Tree, 

AdaBoost, and SVM for the earlier diagnosis and 

Classification of Alzheimer’s disease using Open 

Access Series of Imaging Studies (OASIS) dataset, in 

which a significant performance was achieved using 

Random Forest classifier. 

(Toshkhujaev et al. [32] , 2020) Achieved an 

accuracy of 91.57% on ADNI dataset. The author 

used MALPEM tool for the segmentation of the 138 

ROIs, the time consumed for segmenting one subject 

by this tool is between 8 and 10 hours. The author 

also supplemented these features by age, gender and 

education. 

(Casanova et al. [33], 2011) applied a large-scale 

regularization approach to select only GM and WM 

maps’ voxels with significant contribution to the 

discrimination output. They utilized Penalized 

Logistic Regression to identify voxels with 

significant atrophy in (49) AD and (49) CN subjects. 

Casanova et al. concluded that even WM regions 

carry useful information regarding the diagnosis of 

AD. 

(Khedher et al. [34], 2014) extracted the density 

maps of GM, WM, and CSF using SPM8. Then, they 

exploited two feature reduction methods: Principal 

Component Analysis (PCA) and Partial Least 

Squares (PLS), to reduce the dimensionality of the 

density maps. Khedher et al. tested the two feature 

reduction methods with two SVM classifiers: linear 

and Radial Basis Function (RBF). Training of the 

resulting classification methods was performed on 

(188) AD, (401) MCI, and (229) CN subjects. The 

PLS method reached a peak accuracy rate and 

outperformed the PCA method. 

(Beheshti et al. [35], 2017) uniquely employed 

the Genetic Algorithm to select features based on 

their discriminative contribution. First, they obtained 

GM density maps using SPM8. Then, they segmented 

these GM maps to 3D regions of significant GM 

volume reduction and extracted voxel values from 

those volumes of Interest (VOI). Further feature 

reduction was performed using the Genetic 

algorithm, and the classification was carried out using 

SVM on (160) AD and (162) CN subjects. The 

genetic algorithm was able to select the optimal 

features with maximum discriminative and minimum 

quantity. 

These studies were the first to automate the 

feature extraction and selection methodologies. 

Although these feature selection methods were 

voxel-wise that cannot represent fully detailed 

patterns. Except (Vemuri et al., 2008) who did 

average down-sampling to GM density maps, the rest 

suffered from the same issue of being prone to 

registration error. 

Other studies segmented the brains into several 

anatomical Regions of Interest (ROI) using various 

parcellation approaches. Different methods of feature 

extraction were performed on the anatomical ROIs to 

acquire the feature vectors. These features are called 

ROI-based features. 

(Fan et al. [36], 2008) pursues a voxel-based 

morphometric analysis using an atlas warping 

approach to generate regional tissue density maps 

that reflect the regional distribution of brain tissue. 

The segmented GM maps were aligned to a brain 

template to find regional differences and volumetric 

measurements. They also constructed SVM 

classifiers using these volume measurements. This 

study included (56) AD, (88) MCI, and (66) CN 

subjects. One major conclusion of this study is that 

two thirds of the MCI patients of this cohort are closer 

to AD than they are to CN individuals. 

(Magnin et al. [37], 2009) used an anatomically 

labeled template of the brain that includes the whole-

brain gray matter for the parcellation process. They 

registered the MR images of (16) AD and (22) CN 

subjects to the labeled template to find the best 

correspondence between the anatomical regions of 

the images and the template. This registration process 

provided (90) ROIs that were used to compute the 

intensity histogram of each ROI as a feature. They 

evaluated the new automated method with a SVM 

classifier. 

While these studies used different regions to 

detect patterns of AD, other studies utilized pre-

defined regions like the hippocampal complex for the 

classification of AD. 
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(Colliot et al. [38], 2008) performed an 

automated segmentation of the hippocampus and 

amygdala simultaneously based on competitive 

region-growing between these two structures. A 

bounding box was manually defined around the 

amygdala-hippocampal complex. Classification of 

(25) AD, (24) MCI, and (25) CN subjects were done 

using ROC curves statistical analysis of the measured 

volumes. They found that MCI subjects who later 

converted to AD had (20%) less hippocampal 

volume. 

(Shen et al. [39], 2012) investigated the 

hippocampal shape variation using several Statistical 

Shape Models (SSM). SSMs' dimensionality was 

reduced using PCA, and their discriminative ability 

was tested using SVM classifiers. They concluded 

that while volume alone provides significant 

discrimination ability, the shape of the hippocampus 

can provide valuable information for the diagnosis of 

AD. 

(Ahmed et al. [40], 2014) Used two biomarkers, 

they extracted visual features from the most common 

region affected by AD (hippocampal area) and 

calculated the surrounding CSF amount to 

discriminate between AD, CN, and MCI using the 

Bag-of-Visual Features extraction technique. They 

proposed a late fusion scheme for the classification of 

both biomarkers using SVM with RBF kernel. 

Although they achieved high classification 

results, these traditional feature extraction and 

machine learning techniques still suffer from these 

limitations [41], [42]: 

These techniques are time-consuming and 

require a great deal of experience in the medical 

imaging field for an accurate diagnosis. 

They require intensive processing steps before 

manual or automated feature extraction and selection. 

• Highly prone to the processing errors 

like registration, normalization, 

segmentation, etc. 

• Extracting low-level features using 

classical ML algorithms could fail to 

achieve the best results. 

• Traditional ML approaches have 

relatively lower performance with 

larger amounts of input data. 

5.3 DL Methods: 

A logical next step is to let the computer learn and 

extract features that optimally represent the data for 

the problem task at hand. This concept lies at the 

basis of many DL algorithms: networks composed of 

many layers that transform input data (e.g., MR 

images) to outputs (e.g., disease present/absent) 

while learning increasingly higher-level (deeper) 

features.  

DL is a relatively new machine learning 

methodology that has made significant advances in 

medical imaging recently. Because of their 

high performances in image classification, CNNs 

have gained a lot of attention as the most widely used 

DL architectures. DL architectures, unlike traditional 

machine learning algorithms, allow for the automatic 

abstraction of low-level to high-level latent feature 

representations (e.g., dots, lines, and edges for low-

level features, and circles, cubes, and many other 

shapes and objects for high-level features). As a 

result, it's reasonable to assume that DL relies less on 

image pre-processing and necessitates less prior 

knowledge of other complex procedures like feature 

selection. [38]–[45]. 

 (Suk and Shen [46]) were the first to apply a 

DNN architecture with an input layer, three hidden 

layers, and an output layer. They segmented MRI 

images into three regions: gray matter, white matter, 

and CSF, and then divided them into 93 ROIs. The 

compressed features of the computed GM volumes 

from the segmented ROIs were learned using the 

DNN architecture. They used an SVM classifier to 

evaluate the learned features for subject classification 

after feature extraction and selection. While Suk and 

Shen used a DL architecture, they did not directly use 

the DNN architecture to analyze the MR images, but 

a mere feature selection method. 

In machine learning techniques the Pre-

processing, feature extraction, and selection 

necessitate a great deal of user’s experience because 

it has a significant impact on classification 

performance. DL approaches were used to 
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distinguish AD using original neuroimaging data 

without any feature selection procedures. When using 

DL architecture, pre-processing is optional, however 

it does to reduce DL complexity. The use of whole-

brain or image patches necessitates an extremely 

large number of parameters, dementing extremely 

high computational power in DL approaches. The rise 

of Graphical Processing Units (GPU) for parallel 

computing and the advancement of computational 

power sped up the training of deeper DL 

architectures. This advancement paved the way for 

the use of brain MR images as an input to deep 

learning networks for feature extraction, selection, 

and classification. 

(Valliani and Soni [47], 2017) utilized the pre-

trained ResNet-18 network [48] for the classification 

of (188) AD, (243) MCI, and (229) CN subjects. The 

ResNet-18 model was trained on millions of natural 

images, hence the “pre-trained” term. To initialize the 

kernels of the convolution layers, they used the 

already learned weights on the pre-trained. Input data 

were a single image of the median axial slice skull-

stripped and registered. The last two fully connected 

layers were trained from scratch to output both multi-

class and AD vs. CN prediction results. 

 (Puente-Castro et al. [48], 2020) used the same 

pre-trained ResNet model but replaced the 

classification layer with an SVM classifier. They 

employed a single sagittal slice from the 3D brain 

MRI images for the classification task. 

While these studies used a single slice from the 

3D MR images as inputs, these inputs suffered from 

extreme information loss resulting in low 

classification accuracy. This loss is because one slice 

cannot represent the full details of the brain and the 

patterns of the disease. 

(Qiu et al. [49], 2018) used the pre-trained 

VGGNet-11 for the classification task of (303) CN 

and (83) MCI subjects. Only (3) slices from the 3D 

MR images were used as Input to the network. They 

froze all convolution layers and kept the last fully-

connected layers for the training. They trained three 

models for each slice, and the output prediction was 

fused using a series of voting approaches. Their result 

confirms that using more image slices increases the 

prediction accuracy. 

(Pan et al. [50], 2020) implemented (123) 

homogeneous 2D CNNs with six convolution layers 

and two fully connected layers for a set of slices 

consisting of (40) sagittal slices, (50) coronal slices, 

and (33) axial slices The outputs of multiple trained 

2D CNN classifiers were then combined to create the 

final classifier ensemble, which was used to predict 

classification results. The authors were able to 

examine most brain regions that contribute to the 

differentiation of AD vs. CN subjects using the 

proposed method. 

Even using all the 2D slices as input to the DL 

network, 2D convolution cannot find patterns along 

the 3rd dimension. Researchers tried to solve this by 

constructing DL models that can take the (3) views of 

MR images as inputs. 

(Islam and Zhang [51], 2018) proposed an 

ensemble of (3) homogeneous deep CNN 

architectures with dense connections. These dense 

connections have a regularizing effect that reduces 

overfitting in the network. Each one of the networks 

takes one of the three views: Axial, Sagittal, and 

Coronal, as input images. Islam and Zhang compared 

their model to the two pre-trained models; ResNet 

and Inception. 

(Lin et al. [52], 2018) performed a different 

approach, they assembled 2.5D image patches of 

several selected regions from the 3D MR images. 

They achieved the 2.5D patches by combining the 

three views into an RGB image (each slice has three 

channels). Output features were boosted by an extra 

(325) features extracted using FreeSurfer software. 

Lin et al. introduced PCA to select the most 

redundant CNN- and FreeSurfer-based features 

within the feature vector. Their results show that 

CNN architectures can extract discriminative features 

of the hippocampus for prediction by learning the 

morphology changes between (188) AD and (229) 

CN subjects. And FreeSurfer provides extra 

structural brain image features to boost the prediction 

performance. 

Most authors focused on 3D networks to address 

the problem of insufficient information in the 2D 

slice-level approach. Despite their higher 

computational cost, these models perform better at 



5627  Journal of Positive School Psychology  

 

 

extracting discriminative features from the 3D brain 

in MR images. 

(Cheng et al. [53], 2017) presented a 

combination of multiple 3D CNNs, built on different 

local image patches to transform the local brain 

regions into more compact high-level features. Each 

CNN architecture consists of (4) convolution layers 

and one fully connected layer to classify (199) AD 

from (229) subjects. Their experimental results show 

that the combination of multiple CNNs can improve 

classification performance. (Li et al. [54], 2018) 

proposed a classification method based on multiple 

cluster CNN architectures with dense connections. K-

means clustering is used to group patches with similar 

spatial structures into several clusters, and each CNN 

architecture extracts the patch-level features for each 

cluster. Local patch-level features are ensemble to 

form the final global classification results. Li et al. 

evaluated their method on (199) AD, (229) CN, and 

(403) MCI subjects. 

Other studies focused on brain regions with 

significant morphological variations such as the 

hippocampal complex as input patches for their CNN 

architecture. 

(Adreghal et al. [55], 2017) constructed a 2D 

CNN architecture with only (2) convolution layers 

and one fully connected layer. The input layer 

receives small patches of hippocampal ROI only. 

They extracted the ROI patches using the Automated 

Anatomical Labelling (AAL) atlas with a bounding 

box over the resulted hippocampus mask. They 

concluded that despite using a small ROI patch from 

the MR images, they achieved encouraging accuracy 

results. 

(Liu et al. [56], 2020) presented a multi-model 

DL framework based on CNN architectures for the 

automatic hippocampal segmentation and AD 

classification using structural MRI data. The 

proposed DL framework consists of two DL models. 

One model is a deep CNNs for learning hippocampus 

segmentation, which generates a binary segmentation 

mask of the hippocampus. The second model is a 3D 

CNN with dense connections that receives a 3D ROI 

patch covering the hippocampus extracted based on 

the centroid of the first model's segmentation mask. 

Finally, Liu et al. added a fully-connected layer and a 

SoftMax layer to combine the learned features from 

both models for final disease classification.  The 

proposed framework outputs both the disease status 

and the hippocampal segmentation result for (97) 

AD, (233) MCI, and (119) CN subjects. 

(Katabathula et al. [57], 2021) proposed a 

lightweight DL model for AD classification using 

combined segmented hippocampus features extracted 

by two CNNs with dense connections and global 

shape representations obtained by the LB spectrum. 

The CNN-based feature extraction was performed 

separately on both the left and right hippocampi on 

structural MR images. They demonstrated that the 

combination of CNN-based features and global shape 

features improved AD classification performance. 

The benefit of using small image patches as 

CNN inputs reduces the computational power 

requirements to train such CNN networks. That is 

because an input image with fewer pixels requires 

fewer convolutions, pooling, and other operations. 

Fewer operations mean that the network training 

requires less memory size to hold the activation maps 

of a single iteration. Patch-level networks' drawback 

is that they lack the continuity of the whole image 

resulting in discontinuous patterns in-between 

neighboring patches. 

(Korolev et al. [58], 2017) proposed two deep 

3D CNN architectures for the classification of brain 

MRI scans. First architecture is similar to the 

VGGNet, while the second architecture matches the 

ResNet architecture. Both CNNs implement 3D 

convolution and pooling layers instead of 2D ones. 

Both networks showed similar results for the 

classification of (50) AD, (43) Late MCI, (77) Early 

MCI, and (61) CN subjects. (Yagis et al. [59], 2020) 

presented a deep 3D CNN similar to the VGGNet 

model for the classification of AD patients. The 

network accepts images without any pre-processing 

steps to output the disease state. 

(Ebrahimi et al. [60], 2020) implemented and 

compared several deep models and configurations, 

including 2D and 3D state-of-the-art CNNs. They 

designed a 3D pre-trained ResNet by repetition of 

learned 2D learnable parameters along the 3rd 

dimension. This 3D ResNet achieved better 

classification results compared to other CNN 
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architectures. They explained this by the fact that 2D 

kernels are not optimized to record the spatial 

information of the 3D MR images due to the non-

existence of the 3rd dimension. 

(Zhang et al. [61], 2021) used 3D ResNet 

architecture for classifying AD vs. CN and 

progressive MCI (pMCI) vs. stable MCI (sMCI). 

They utilized the Self-Attention residual mechanism 

to capture long-range dependencies and reduce 

computational inefficiency due to repeated 

convolutional operations. They also implemented 

gradient-based localization class activation mapping 

(Grad-CAM) to visualize and explain the prediction 

of AD. Results have shown that the classification 

performance of models with the self-attention 

mechanism is significantly higher than models 

without it. 

The increase of studies in DL related to AD 

classification can be attributed to its ease of use. In 

traditional ML techniques, obtaining the AD-related 

features is necessary, but these features become 

increasingly hard to find as the complexity of data 

increases. DL simplicity comes from the fact that the 

user does not have to decide which features are 

efficient; the DL hidden layers were decide. 

6 DISCUSION: 

AD diagnosis at an early stage occupies a significant 

role in reducing its symptoms and decelerating 

Cognitive Deterioration. Hence the computer-aided 

systems for early and accurate AD diagnosis became 

critical. In recent years, many studies focused on 

extracting the AD-related feature from SMRI images 

for the classification task of AD and CN using many 

techniques applied on MRI data with various AD 

datasets. In this study, brief literature on the 

previously adopted AD diagnosis techniques will be 

reviewed beginning with traditional diagnosis 

methods and advancing to the relevant modern 

employment of DL in AD classification. 

In the method that relies on machine learning 

techniques, the number of subject participants in the 

experimental was limited this lead to limitations in 

the achieved results. In this study, only methods with 

more than 150 subjects per class are selected to 

compare their results. The table below shows a 

comparison between state-of-art ML methods to 

discriminate AD from CN subjects based on MR 

images. 

 

Method AD vs. CN 

Baglat et al. [31] 86.8% 

Ahmed et al.[40] 87.00% 

Shen et al.[39] 88.00% 

Khedher et al. [34] 88.49% 

Vemuri et al. [30] 89.30% 

Toshkhujaev et al. [32] 91.57% 

Table 1: shows results comparison between the state-of-art methods. 

In general, several studies that adopted traditional 

ML techniques suffered from three problems that 

lead to limitations in final accuracy:  

• Such techniques are time-consuming and 

require a great deal of experience in 

medical imaging to produce an accurate 

diagnosis. 

• These techniques also require intensive 

pre-processing steps to facilitate feature 

extraction and selection, which can be 

error-prone. 

• Extracting low-level features using 

classical ML algorithms from multiple 
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imaging modalities may fail to achieve 

the best results. 

In recent years, a large number of studies 

depended on more advanced DL techniques, although 

these studies achieved high accuracy compared with 

ML techniques but also suffered from limitations due 

to their inputting data way. Some DL studies utilized 

whole-brain MR original images as input to automate 

feature extraction and classification across the brain. 

However, these methods have several limitations:  

• One or more 2D slices of a 3D brain MRI 

were used in several studies. They had 

low classification accuracy because they 

ignored other brain regions not included 

in the chosen 2D slices, which resulted in 

information loss. 

• A number of studies used all 2D slices of 

a 3D brain MRI. Given that MRI scans 

are 3D images and that 2D image slices 

have a spatial relationship, 2D 

interpretation of the 3D world suffers 

from information loss. 

• Several studies have proposed 3D DL 

architectures for extracting features from 

3D brain MRIs; however, due to the high 

dimensionality of these studies, they are 

prone to over-fitting. 

• Using Whole-brain MR original images 

leads to ignoring the regional and local 

pathological information that is critical 

to the diagnosis of AD 

Other studies that depend on DL have focused 

on feature classification extracted from segmented 

ROIs such as the cortical and subcortical regions, 

including the hippocampi, GM, and CSF. Such 

methodologies can result in good classification 

accuracy. The limitation of these studies is that they 

neglect possible pathological variation across the 

whole brain regions. Connectivity between brain 

regions contributes to the classification accuracy of 

the brain MR images. 

Several studies reviewed most papers that 

proposed to use CNN models for AD classification 

using anatomical MRI. Due to many differences 

between these papers, like participant selection, 

image pre-processing steps, and validation 

procedures, it is impractical to compare classification 

performance across studies. Furthermore, because the 

frameworks for these studies are not publicly 

available and implementation details are missing, 

they are difficult to replicate. Finally, due to 

insufficient or unclear procedures, some papers may 

report biased results [41]–[45], [62]. Table (2) shows 

comparison between the state-of-art DL-based 

methods; reported in the literature. 

 

Method Data input 
AD vs. 

CN 

AD vs. 

MCI 

CN vs. 

MCI 

Multi-

class 

Valliani and Soni [47] 2D Slice-level 81.30%   56.80% 

Puente-Castro et al.[48] 2D Slice-level 81.46%    

Qiu et al.[49] 2D Slice-level  83.10%   

Pan et al. [50] 2D Slice-level 84.00%  79.00%  

Islam and Zhang [51] 2D Slice-level 93.18%    

Lin et al. [52] 2.5D Slice-level 88.79% 81.40%   
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Cheng et al. [53] 3D Patch-level 87.15%    

Li et al.[54] 3D Patch-level 89.50%  73.80%  

Adreghal et al. [55] 3D ROI-level 82.80% 62.50% 66.00%  

Liu et al. [56] 3D ROI-level 88.90%  76.20%  

Katabathula et al. [57] 3D ROI-level 92.52%    

Korolev et al.[58] 3D Full MRI 88.00% 67.00% 67.00%  

Yagis et al.[59] 3D Full MRI 73.40%    

Ebrahimi et al.[60] 3D Full MRI 96.88%    

Zhang et al.[61] 3D Full MRI 91.30%    

Table 2: Comparison with state-of-the-art methods. 

7 CONCLUSION: 

Alzheimer's disease is a chronic neurodegenerative 

disease that causes nerve cell death and tissue loss 

throughout the brain. It usually begins slowly and 

gets worse over time. There is no cure currently 

available for stopping or reversing the disease 

progression, which results in the medications being 

focused on relieving the patients from its symptoms. 

The cost of these medications that expected to rise 

dramatically, thus necessitating individual computer-

aided systems for early and accurate AD diagnosis. 

The effective and accurate detection of AD is 

important for the initiation of effective treatment. In 

particular, Early detection of AD is critical for 

therapeutic development and, ultimately, for 

effective patient care. This study performed a 

systematic review of the most important AD datasets, 

ML and DL diagnostic approaches of AD based on 

MRI neuroimaging data .this study noticed that 

published papers in this field tend to focus on two 

main areas of research: identification the AD-related 

structural biomarkers from MRI images, exploit the 

ML and DL techniques that couple with these 

structural biomarkers in order to discriminant AD 

patients, mild cognitive impairment and cognitively 

normal. Most of the studies in the literature are 

achieved high accuracies, especially which relies on 

DL techniques, due to their ease of use and their 

ability to extract high-resolution feature that is more 

related to the disease. 
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