
Journal of Positive School Psychology http://journalppw.com  

2022, Vol. 6, No. 8, 5343-5363 
 

A Modified Theory-Based Method For Answer-Correlated 

Weighting Ordering Theory And Its Application  
 
1Hui-Ju Chen , 2*Shu-Chuan Shih , 3.Tian-Wei Sheu , 4Boi-Yee Liao  

 
1Graduate Institute of Educational Information and Measurement, National Taichung University, Taichung, 

Taiwan, R.O.C. cms103106@gm.ntcu.edu.tw  
2*Graduate Institute of Educational Information and Measurement, National Taichung University, Taichung, 

Taiwan, R.O.C. ssc@mail.ntcu.edu.tw 
3Graduate Institute of Educational Information and Measurement, National Taichung University, Taichung, 

Taiwan, R.O.C. ssc@mail.ntcu.edu.tw 
4 Instituteof Engineering Technology Management, International College, Krirk University, Bangkok, Thailand. 

Y57082112@gmail.com 

 

 

Abstract 

Multiple-choice questions have been used as objective tests, and their results have served as optimal 

materials for analyzing test question response theories and conceptual structures. People’s answers to 

multiple-choice questions can only be used to analyze distracters and trick questions. At present, 

conceptual structure analyses only assess whether correct or incorrect answers have been given when 

providing visual descriptions, failing to account for information hidden among different incorrect 

answers. In practice, question designers can design incorrect answers that reveal some information 

about the participants’ knowledge. Accordingly, this study proposed a new answer-correlated weighted 

conceptual structure model that enhances the precision of analysis results to more accurately reflect 

participants’ learning statuses. 

To verify the validity of the answer-correlated weighting ordering structure, this study used 

ordering theory and modified the model through answer weighting to develop answer-correlated 

weighting ordering theory. A simulation study was conducted to assess the estimation accuracy of the 

model. Participants’ responses were simulated using Ozaki’s structured deterministic inputs, noisy 

“and” gate model for multiple-choice items, and a four-part cognitive attribute structure was used to 

form ideal test question responses. The four-part structure, five sample sizes, four participant answering 

errors, and three different test question numbers were used to create 240 test scenarios. A total of 100 

simulated binary sum answers were generated for each simulation scenario. The results demonstrated 

that answer-correlated weighting ordering theory exhibited the most effective estimation performance 

and generated favorable results in all participant “answering error” situations.  

 

Keywords: Q-matrix theory, ordering theory, multiple-choice questions, answer-correlated weighting 

ordering theory. 

 

Introduction  

Knowledge learning is “in order” in that 

previously learned knowledge or concepts are 

the prerequisites for the acquisition of 

subsequent knowledge. During the learning 

process, the brain stores acquired knowledge 

structurally. When acquiring new knowledge, 

two processes occur; the knowledge received is 

affected by the existing knowledge structure, and 

the knowledge in turn changes the original 

knowledge structure. On the basis of the 

aforementioned knowledge learning 

characteristics, if students’ knowledge structure 
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and misconceptions can be identified early 

during the teaching process, crucial feedback 

information can be provided to teachers and 

students, improving teaching methods and 

learning results, respectively. Accordingly, 

determining how to estimate and analyze 

structural changes before and after knowledge 

acquisition has become a critical research topic 

in the field of cognitive diagnostic assessment. 

Airasian and Bart (1973) argued that, similar to 

knowledge learning, test questions exhibit order-

like characteristics. Thus, they applied ordering 

theory (OT) to estimate the order structure of test 

questions and used said structure to establish 

students’ knowledge learning order (Bart & Krus, 

1973) and to develop learning order-based 

cognitive diagnoses. In 1997, Appleby, Samuels, 

and Treasure-Jones developed Diagnosis, the 

first knowledge structure-based computerized 

adaptive testing system for fundamental 

mathematics university courses. Later, the 

knowledge structure-based adaptive testing 

(KSAT)system, a joint OT and knowledge 

structure-based computerized adaptive testing 

system, was introduced. Shih, Kuo, and Liu 

(2012) indicated that on average, using OT and 

students’ responses to build students’ knowledge 

structure and then applying appropriate 

questions from question databases to diagnose 

students’ misconceptions can reduce more than 

half the time required to prepare test questions 

(Liu, Jeng, Tsai, Yu,& Lu, 2013). The time saved 

can then be used to provide remedial education. 

The aforementioned diagnostic results are robust, 

and this system is effective even when applied to 

other units or related topics. One study compared 

students’ cognitive and expert structures 

(Kalyuga, Rikers, & Paas, 2012) for teachers to 

diagnose students’ learning difficulties or 

misunderstandings in the context of remedial 

education. 

Wu, Kuo, and Yang(2012) conducted a 

simulation study in which they compared the 

estimation accuracy of and number of test 

questions presented using adaptive test systems 

based on OT, item relational structure(Takeya, 

1991), Diagnosis, and domain experts. They 

observed that OT-based adaptive test systems 

demonstrated the most favorable performance, 

with their estimated performance similar to that 

obtained in pen and paper-based tests. OT is the 

primary method used to build student knowledge 

structure in the KSAT system. However, OT is 

mainly applied to binary scoring data, and 

cognitive diagnosis models (CDMs) receive 

limited information from responses. 

Accordingly, Liu (2007) assigned different 

scores to the answers to constructed-response 

items at different steps. Related studies have 

extended binary scoring to poly to outscoring, 

expanding the application of OT and 

constructed-response items that adopt 

polytomous scoring methods (Liu, Sheu, Tsai, 

Kniew, and Guo, 2017).Liu(2012a, 2012b) used 

the correlation coefficients between test 

questions to exclude the independent effects of 

test questions on each other and developed test 

question OT based on the Q-matrix theory. All 

efficient items (or “efficient test questions”) 

clearly correlated with cognitive attributes were 

tested to obtain the test question correlation 

structure of all participants and of each 

individual participant, facilitating cognitive 

diagnosis analyses and the subsequent provision 

of proper remedial education. Through 

enhancing OT and providing the information 

necessary for adaptive systems to build 

individuals’ knowledge structure, estimation 

accuracy can be elevated. 

 

CDM 

Cognitive diagnosis assessments assess 

individuals’ cognitive processes, processing 

skills, or knowledge structure (Gierl, Leighton, 

& Hunka, 2000; Yang & Embretson, 2007). 

These assessments measure participants’ test 

responses, with CDMs subsequently applied to 

estimate participants’ potential knowledge state 

(KS) according to their responses. In cognitive 

diagnoses, participants’ KS refers to the 

participants’ mastery of the cognitive attributes 

or skills required in the assessed tasks. Therefore, 

in education assessments, relevant tests are 

designed and students’ responses are obtained to 

determine individuals’ knowledge profiles 

(Mislevy, Steinberg & Almond, 2003). 



5345  Journal of Positive School Psychology  

 
Q-Matrix Theory 

In 1983, Tatsuoka proposed a CDM based on Q-

matrix theory called the “rule-space model.” 

Tatsuoka’s Q-matrix theory uses test questions 

to derive related cognitive attributes and their 

structural relationships. Assuming that a test that 

measures K cognitive attributes can generate 

2K -1 possible test questions after removal of 

the test questions without any attributes, the 

correlation matrix between the cognitive 

attributes and test questions is Q-

matrix(
Q = (q

kj
)
K´(2K-1) , 1£ k £ K , 

1£ j £ 2K -1). 
q
kj

= 1
 if test question j tests 

cognitive attribute Ak; otherwise,
q
kj

= 0
. 

Cognitive attributes are relevant attributes, skills, 

or strategies that experts or question designers 

wish to measure through tests. When attribute Ai 

must be known before attribute Aj, Ai is referred 

to as the prerequisite attribute (or lower-level 

attribute) of Aj. By contrast, Aj is referred to as 

the subsequent attribute (or upper-level attribute) 

of Ai ( ). If the absence of attribute Ak 

results in  and , then Ai is the 

direct prerequisite attribute of Aj 

(
A
i
® A

j ).Figure 1 illustrates a cognitive 

attribute structure with four attributes, where 

attributesA2and A3arethe direct prerequisite at 

tributes of A4, attribute A1 is the direct 

prerequisite attribute of A2and A3, and 

attributeA1is the prerequisite attribute of A4. 

Thus, 
A

2
® A

4,
A

3
® A

4 ,
A

1
® A

2 ,
A

1
® A

3 , 

and . 

The direct prerequisite relationships between K 

cognitive attributes can be expressed as K-order 

binary matrix
A

K
= (a

ij
)
K´K , which is referred 

to as the adjacency matrix. If attribute Ai is a 

direct prerequisite attribute of Aj (i.e.,
A
i
® A

j ), 

matrix element
a
ij

= 1
; otherwise, 

a
ij

= 0
. The 

prerequisite relationships between cognitive 

attributes can be expressed as K-order binary 

matrix
R

K
= (r

ij
)
K´K , which is referred to as the 

reach ability matrix. If attribute Ai is a 

prerequisite attribute of Aj (i.e., ),

r
ij

= 1
; otherwise, 

r
ij

= 0
.Figure2 depicts the 

adjacency matrix and reachability matrix of the 

cognitive attribute structure presented in Figure 

1. 

 
Figure 1 

Cognitive AttributeStructure 
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Figure2 

Adjacency Matrix and Reachability Matrix 

 

Given cognitive attributes A and B, if A is the 

prerequisite attribute of B, . In this 

study, test question j measured only attribute B 

and not attribute A. Thus, to answer the question 

correctly, only attribute B was required. Because 

this was logically flawed and did not conform to 

the cognitive attribute structure described, such 

test questions were categorized as inefficient test 

questions; the other test questions were 

categorized as efficient test questions. Inefficient 

test questions in the Q-matrix were removed, 

producing a reduced Q-matrix (i.e., QR) that 

served as the blueprint for developing tests that 

satisfied the cognitive attribute structure. As 

presented inFigure 1, a test question in the 

cognitive attribute structure has a Q vector of 

0100, signifying that the test question tests only 

attributeA2. However, according to the cognitive 

attribute structure, attributeA1 is a prerequisite 

attribute of A2, meaning that the test question 

tests both attributesA2and A1; therefore, a test 

question with a Q vector of 0100 does not 
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conform to the cognitive attribute structure 

presented in Figure 1. This test question is thus 

categorized as an inefficient test question and 

removed from the Q-matrix. A Q-matrix with 

four cognitive attributes must have 15 (i.e., 

24 -1=15 ) test questions. Figure3depicts a 

reduced Q-matrix following the removal of 

inefficient test questions and retention of the 

remaining five efficient test questions. 

According to the correlation structure of QR, the 

structure between cognitive attributes can be 

recertified, and the correlation structure between 

efficient test questions can be determined (Liu, 

2012a). Participants’ KS signifies the attributes 

required for them to answer test questions 

correctly. Under the assumption that participants 

do not guess the answers or choose the incorrect 

answers by mistake, QR plus a 0 vector without 

attributes is equal to participants’ KS matrix

(Figure 4). The matrix element 
a
ik

= 1

represents the i-th KS, which can be used to 

solve the k-th cognitive attribute; otherwise, 

a
ik

= 0
. 

 

Q =
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Figure3 Q-Matrix and Reduced Q-Matrix 

 

 
Figure 4 KS Matrix 

 

Ideal Responses 

Ideal responses are participants’ expected 

responses to test questions, assuming they 

neither guess the answers nor mistakenly choose 

the incorrect answers. For example, according to 

the reduced Q-matrix and KS matrix illustrated 

in Figure3and Fig. 4, respectively, with the 

assumption that the KS of Participant i is 

, the participant only has 

cognitive attributes A1 and A3 and can only 

answer Questions 1 and 2 in the QR correctly; 

thus, their ideal responses are
1,1,0,0,0( )

. If a 

test has K cognitive attributes, n test questions, 

and N dissimilar KSs, the participant’s ideal 

response for test question j would be

h
ij

= a
ik

q
kj

k=1

K

Õ
. Here 

h
ij

= 1
signifies that the 

participant has all the cognitive attributes 

required to answer the test question 

correctly.Table1 lists the corresponding ideal 

responses for all the KS in Figure 4, respectively. 

 

Table1 

Knowledge State and Ideal Responses 

Knowledge state( ) Ideal response( ) 

(0, 0, 0, 0) (0, 0, 0, 0, 0) 

(1, 0, 0, 0) (1, 0, 0, 0, 0) 

(1, 0, 1, 0) (1, 1, 0, 0, 0) 

(1, 1, 0, 0) (1, 0, 1, 0, 0) 

(1, 1, 1, 0) (1, 1, 1, 1, 0) 

(1, 1, 1, 1) (1, 1, 1, 1, 1) 

 

Multiple-Choice Test Questions and Test 

Question Q-Matrix 

Test question Q-matrices present the 

relationships between test questions and 

attributes and are commonly used in CDMs with 

binary scoring. These models estimate 

participants’ KS based on whether they have 

answered the test questions correctly. If test 

questions are multiple-choice questions that 

adopt the binary scoring method, the information 

provided by distractors is overlooked. De la 

Torre (2009) combined answers and Q-matrices 

to create answer Q-matrices, joining distractors 

and participants’ KS and enhancing KS 

estimation accuracy.Table2 presents the test 

question Q-matrix used in de la Torre’s study; 

the number 0 indicates a test question without 

any attribute, with the other numbers denoting 

the number of times a test question was linked to 

an attribute. For example, the Q vector of 

Question 21is (3,2,1,0,0), signifying that three, 

two, and one of the four answers are linked to 

one, two, and three attributes, respectively. 
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Based on this method, the test question answer 

Q-matrix was constructed, as detailed in  

Table3. Assuming that the Q vectors of the four 

answers were q1, q2, q3, and q4, then 

q4⊂q3⊂q2⊂q1. Here, q1is a correct answer 

(Answer1), and the Q vector of any subsequent 

answer is a subset of the previous answer. 

 

Q-Matrix as a Basic CDM 

To diagnose participants’ learning mistakes and 

provide them with effective remedial education 

according to these diagnoses, national and 

international scholars have continually revised 

and advanced CDMs. Today, CD Ms with Q-

matrices all use the deterministic inputs, noisy 

“and” gate (DINA) and deterministic inputs, 

noisy “or” gate (DINO) models as their basis. 

 

Table2  

Multiple-Choice Test Question Q-Matrix 

Attribute  Attribute 

Test question 1 2 3 4 5  Test question 1 2 3 4 5 

1 1 0 0 0 0  16 0 1 0 2 0 

2 0 1 0 0 0  17 0 1 0 0 2 

3 0 0 1 0 0  18 0 0 1 2 0 

4 0 0 0 1 0  19 0 0 1 0 2 

5 0 0 0 0 1  20 0 0 0 1 2 

6 1 0 0 0 0  21 3 2 1 0 0 

7 0 1 0 0 0  22 1 2 0 3 0 

8 0 0 1 0 0  23 3 2 0 0 1 

9 0 0 0 1 0  24 1 0 3 2 0 

10 0 0 0 0 1  25 2 0 3 0 1 

11 2 1 0 0 0  26 1 0 0 2 3 

12 2 0 1 0 0  27 0 2 3 1 0 

13 1 0 0 2 0  28 0 3 1 0 2 

14 2 0 0 0 1  29 0 2 0 3 1 

15 0 2 1 0 0  30 0 0 1 3 2 

Source: de la Torre (2009) 

 

Table3  

Answer Q-Matrix for Test Question 21 

 Attribute 

 1 2 3 4 5 

Answer1 1 1 1 0 0 

Answer2 1 1 0 0 0 

Answer3 1 0 0 0 0 

Answer4 0 0 0 0 0 

Following numerous corrections and 

enhancements by various researchers, the DINA, 

DINO, and generalized deterministic inputs, 

noisy “and” gate model (G-DINA) are as follows: 

 DINA Model. Junker and Sijtsma (2001) 

developed the DINA model to assess whether 

participants understand their own cognitive 

attributes. When participants lack the attributes 

measured through test questions, they are 

regarded as unable to answer the questions. 

Accordingly, the probability of Participant i 

answering question j correctly presented as 

follows: 

 (1) 

Here, 
h
ij  is Participant i’s ideal response to test 

question j given that they have KS ;sj is the 

“mistakenly choose the incorrect answer” 

parameter; and gj is the guess parameter. 

 

 DINO Model. Templin and Henson 

(2006) divided participants into two categories, 

with one category containing participants who 

had mastered at least one attribute required to 

answer test questions, and the other containing 

participants who had not mastered any attribute 

required to answer test questions. Next, they 

proposed the DINO model in which the 

probability of Participant i answering question j 

correctly is as follows: 

 (2) 

Here, 
v
ij

= 1- (1-a
ik
)
q
jk

k=1

K

Õ
.

v
ij

= 1
 

signifies that Participant i has mastered at least 

one cognitive attribute required to answer test 

question j correctly, whereas 
v
ij

= 0
signifies 

that Participant i has not mastered any cognitive 

attribute required to answer test question j 

correctly. 

 

 G-DINA Model. In the DINA model, 

unless the participants have mastered all 

attributes required to answer test questions 
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correctly, the participants are regarded as having 

guessed the answers to some test questions. Thus, 

when estimating the probabilities of participants 

answering test questions correctly, the 

probabilities of them guessing the correct 

answers are applied. Similarly, in the DINO 

model, when participants have not mastered any 

cognitive attribute required to answer test 

questions correctly, the probabilities of them 

guessing the correct answers are used to estimate 

the probabilities of them answering test 

questions correctly. Because both the DINA and 

DINO models are impractical, de la Torre (2011) 

calculated the correlations between attributes 

and introduced the G-DINA model. The model 

divides participants into 2
K
j
*

groups, and defines 

the probability of Participant i answering test 

question j correctly as follows: 

 

P(a
ij

* ) = d
j0

+ d
jk
a
lkk=1

K
j
*

å + d
jkk '

a
lk
a
lk '

+d
j12...K

j
* a

lkk=1

K
j
*

Õ
K
j
*-1

åk '>k

K
j
*

å
(3) 

where, 

d
j0 :The intercept of test questionj. 

d
jk :The main effects on

a
k . 

d
jkk ' :The interactive effects on 

a
k and

a
k '. 

d
j12...K

j
*

:The interactive effects from
a
k to

a
k '. 

 
d
j0 represents the effects produced 

when a participant does not have any attribute 

required to answer a given test question, whereas 

d
jkk ' is the interactive effects generated when a 

participant has both attributes
a
k and 

a
k ' . 

d
j12...K

j
*

 is the effect size when a participant has 

all the attributes required to answer a given test 

question. Thus, in the G-DINA model, varying 

participant KSs may result in the participant 

having different probabilities of answering test 

questions correctly. 

 

Test Question OT-Based Cognitive 

Diagnoses 

 

Test Question OT 

First, assume that N participants are completing 

a test with n test questions; a value of 
x
ij

= 1
 is 

assigned if Participant I answers test question j 

correctly, and otherwise,
x
ij

= 0
 ( i =1,2,...,N , 

j =1,2,...,n
). Next, two test questions are 

presented, namely j and m, with test question j 

less difficult than test question m. Assuming that 

Participant I does not guess the answers or 

choose the incorrect answers by mistake, the 

lower the probability ratio of answering test 

question j incorrectly and test question m 

correctly, the more favorable the result. On the 

basis of this concept, Airasian and Bart (1973) 

developed test question OT to determine the 

order structure between test questions (i.e., the 

prerequisite relationships between test questions) 

and define the order coefficients of test questions 

j and m, which is described as follows: 

 
g
jm

= 1- P x
j
= 0,x

m
=1( )

 (4) 

Here,
P X

j
= 0,X

m
= 1( ) =

1

N
# i;x

ij
< x

im{ }
is 

the joint probability that a participant answers 

test questionjincorrectly and test question m 

correctly. If 
g
jm

> e Î 0.96, 0.98éë ùûand e is the 

threshold constant of a subjective decision, test 

questions j and m exhibit a sequential 

relationship. That is, test question j is the 

prerequisite test question of test question m, and 

X
j
® X

m  is marked. 

 

Ozaki’s Multiple-Choice-S-DINA Model 

De la Torre (2009) combined test question 

answers and the DINACDM (Junker & Sijtsma, 

2001; de la Torre, 2008)in developing the 

multiple-choice deterministic inputs, noisy “and” 

gate (MC-DINA)model, using distractors to 

reveal participants’ KS. When participants select 

answers, distractors can induce specific 

responses from the participants to correctly 

diagnose their KS. In heriting the characteristics 

of the DINA model, the MC-DINA model has 

noncompensatory and connective characteristics. 

Noncompensatory characteristic refer to 
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cognitive attributes that are absent cannot be 

compensated by other pre-existing cognitive 

attributes. By contrast, connective 

characteristics represent the identical 

probabilities of participants answering test 

questions correctly despite not having the 

attribute required to answer said test questions to 

those of participants answering questions 

correctly despite not having two or more 

attributes required to answer said test questions. 

On the basis of MC-DINA, Ozaki(2015) 

proposed the MC-S-DINA model, enabling 

participants with varying KSs to exhibit different 

probabilities of answering test questions 

correctly. 

Given that a test measures K cognitive attributes 

and contains ntest questions, and that each 

question has l answers that may be selected, if 

Participant i has a KS of , the probability that 

they select c as the answer for test question j is 

expressed as follows: 

(5) 

where 

 

w
ij
(c) = d

j
(c)

(1-h
ij
(c))(1+ r

ij
(c))

(1-h
ij
(c))(1+ r

ij
(c))

c=1

l

å
(6) 

If participants do not have any attributes required 

to answer test questions correctly, then the 

probability of them answering any test question 

correctly is one out of the number of possible 

answers. If participants’ KS and the cognitive 

attributes measured with answer c are identical,

h
ij
(c) = 1

; otherwise,
h
ij
(c) = 0

.
d
j
(c)

is the 

probability of participants selecting answers that 

are not identical to their KS. When this occurs, 

the participants are likely to guess the answers or 

mistakenly choose the incorrect answers.

1-d
j
(c)

 signifies the probability of 

participants selecting answers that are identical 

to their KS.
w
ij
(c)

is the probability that 

Participant i selects the correct answer to test 

question j when their KS differs from the 

cognitive attributes measured using said test 

question by at least one. Here,
r
ij
(c) = a

ik
q
kj
(c)

k=1

K

å
 

is used to calculate the degree of approximation 

between Participanti’s KS and the cognitive 

attributes of test questionj’s answer c. The higher 

the 
r
ij
(c)

, the higher the degree of 

approximation between the participant’s KS and 

the cognitive attributes measured with answer c, 

and the higher the probability (
w
ij
(c)

) that the 

participant selects said answer. Conversely, the 

lower the 
r
ij
(c)

, the wider the gap between the 

participant’s KS and the cognitive attributes 

measured with answer c, and the lower the 

w
ij
(c)

.Thus, when participants lack a varying 

number (at least one)of attributes measured 

through certain answers, the probabilities that 

they answer the test questions correctly differ. 

 

Study Methods 

 

Answer-Correlated Weighting OT 

Traditional multiple-choice tests adopt a binary 

scoring method, that is, participants receive a 

score of one when they are correct, and zero 

otherwise. Therefore, they only receive scores 

for correct answers and not for incorrect answers 

nor for choosing distractors as answers. In 

diagnostic tests, if researchers analyze the binary 

response-based total test scores only (de la Torre, 

2009; Liu et al., 2015; Ozaki, 2015), information 

provided by distractors is lost. OT identifies the 

sequential relationships between test questions 

through use of binary responses. Liu et al. (2015) 

analyzed the information provided by test 

question answers, converting binary responses 

into answer indicators and calculating the 

correlation coefficients between answers and 

total test scores. The coefficients were then set 

as normalized weighting coefficients of the 

answers relative to their test questions, 

transforming test scores from binary scores(i.e., 

zero orone)into polytomous scores between zero 

and one. 

However, distractors are negatively correlated 

with total scores (Gierl & Lai, 2018). The 
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method adopted by Liuet al. (2015) resulted in 

standardized answer weighting coefficients of 

distracters being assigned as zero and the 

weighting coefficients of incorrect answers 

being assigned a higher value than those of 

distractors. Therefore, this study used the 

correlation coefficients between answer 

indicators and correct answers to recalculate 

standardized weighting coefficients, 

subsequently proposing answer-correlated 

weighting ordering theory (OCWOT). 

Assume N participants are completing a test with 

n test questions, and that each question has 

lpossible answers. If the ith participant chooses 

answer c as the answer to test question j,

x
ij
(c) = 1

;otherwise,
x
ij
(c) = 0

 (i = 1,2,…,N; j 

= 1,2,…, n;c = 1,2,…,l). 

Under the assumption that the correct answer to 

test question j is answer c
*
, the answers selected 

by participants is weighted in correlation to c
*
. 

This study proposed a method of identifying the 

correlation coefficient
w
j
(c)

 between answers c 

and c*(the correct answer) for test question j. 

That is, 

 

w
j
(c) =

x
ij
(c) - x

j
(c)( )i=1

N

å x
ij
(c*) - x

j
(c*)( )

(N -1)S
j
(c)S

j
(c*)

(7) 

where,
x
j
(c) =

1

N
x
ij
(c)

i=1

N

å
；

x
j
(c*) =

1

N
x
ij
(c*)

i=1

N

å
; 

S
j
(c) =

1

N -1
x
ij
(c) - x

j
(c)( )

2

i=1

N

å
ì
í
î

ü
ý
þ

1

2

；

S
j
(c*) =

1

N -1
x
ij
(c*) - x

j
(c*)( )

2

i=1

N

å
ì
í
î

ü
ý
þ

1

2

 

Next, set 
W
j
(c) = w

j
(c) ;c =1,2,...,l{ }

.In this 

study, the weighted score of answer c to test 

question j was 

w
j
(c) =

W
j
(c) - minW

j

maxW
j
- minW

j .That 

is, the score of Participant i for test question j in 

a test was 
x
ij
(c)w

j
(c)

c=1

l

å
. This signifies that 

the score of Participant i was

x
ij
(c)w

j
(c)

c=1

l

åj=1

n

å
, contrary to that 

obtained using the previous calculation method

x
ij
(c)

c=1

l

åj=1

n

å
. 

When 
x
ij

= x
ij
(c)w

j
(c)

c=1

l

å
, researchers can 

obtain the poly to obtain matrix of 
x
ij( )
N´n, that 

is, 
x
ij
Î 0,1éë ùû , which is different from 

x
ij

Î 0,1{ }
. The order coefficient of test 

question j and test question m is thus defined as 

follows: 

 

g
jm

=
1-V

jm
,L

jm
¹ 0

0 ,L
jm

= 0

ì

í
ï

îï  (8) 

V
jm

=
w
m
(c

1
) -w

j
(c

2
)é

ë
ù
û

+

c
2
=1

l

åc
1
=1

l

å P X
j
= w

j
(c

1
),X

m
= w

m
(c

2
)( )

w
m
(c

1
) -w

j
(c

2
)é

ë
ù
û

+

c
2
=1

l

åc
1
=1

l

å
(9) 

L
jm

= P X
j
= w

j
(c

1
),X

m
= w

m
(c

2
)( )- P X

j
= w

j
(c

1
)( )P Xm = w

m
(c

2
)( )é

ë
ù
û

2

c
2
=1

l

å
c
1
=1

l

å
(10) 

Here, 
xéë ùû

+

= max{x,0}
.

P X
j
= w

j
(c

1
),X

m
= w

m
(c

2
)( )

 is the joint 

probability of receiving a score of
w
j
(c

1
)
for test 

question j and a score of
w
m
(c

2
)
for test question 

m. 
P X

j
= w

j
(c

1
)( )

and 
P X

m
= w

m
(c

2
)( )

are 

the marginal probabilities of receiving a score of

w
j
(c

1
)

 for test question j and a score of 

w
m
(c

2
)

for test question m (
j,m=1,2,...,n

), 

respectively. 
L
jm is used to test the correlation 
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between test questions jand m. When the two test 

questions are independent, 
L
jm

= 0
, and the two 

test questions have an order coefficient of 

g
jm

= 0
. When 

g
jm

> e = [0.96,0.98]
, test 

questions j and m share a sequential relationship 

in which test question j is the prerequisite test 

question of test question m (i.e., 
X
j
® X

m ). 

Here, e is a predetermined threshold. 

 

Studying the Simulation and Empirical 

Data 

To compare the accuracy of OT and OCWOT in 

constructing participants’ test question order 

structure, the simulation study data and 

empirical data were compared. 

 

Simulation data and procedure. The cognitive 

attribute structure of the test introduced in this 

simulation study was built using the sequential 

relationships of cognitive attributes. Leighton, 

Gier, and Hunka (2004) maintained that all 

cognitive attribute structures are constructed 

using the four basic cognitive attributes 

presented in Figure 5 (i.e., linear, convergent, 

divergent, and unstructured cognitive attributes). 

Accordingly, this study used the four-part basic 

cognitive attribute structure as a blueprint with 

which to generate the Q-matrices required for the 

test questions and their answers. 

The test questions all contained four answers. 

The control factors were as follows:(a)sample 

size:50,100,150,200, and 

1,000participants;(b)percentage of guesses and 

incorrect answers chosen by mistake:10%, 

20%,30%, and 40%;(c) number of test 

questions:10,20, and 30; and (d)cognitive 

attribute structure: convergent, divergent, linear, 

and unstructured structure. The possible 

simulation scenarios were 240 

( 5´ 4´3´ 4 = 240 ), with 100 binary sum 

answers generated for each simulation scenario. 

 

The simulation procedure is as follows: 

 

Step 1: 

(1) Choose a basic cognitive attribute structure 

and establish its adjacency and reachability 

matrices. 

(2) Remove test questions in the Q-matrix that 

do not conform to the test questions in the 

cognitive attribute structure to derive the 

reduced Q-matrix QR. 

(3) Obtain participants’ KS ( ) through adding 

the 0 vector to the QR and expand 

participants’ KS to the desired sample size, 

ensuring the total test score conforms to 

normal distribution. 

 

Step 2: 

(1) Select the corresponding number of 

questions from the QR according to the 

required number of test questions. 

(2) Given that all test questions have four 

answers, select subsets from test question Q 

vectors as answer Q vectors, ensuring that 

the subsets meet the cognitive attribute 

structure selected in Step 1. 

 
Figure 5 Four-Part Basic Cognitive Attribute 

Structure 

 

Step 3: 

(1) Use the KS in Step 1 nd test question and 

answer Q-matrices in Step 2–(2) to calculate 

the ideal responses of the binary sum 

answers. 

(2) Apply the MC-S-DINA model presented by 

Ozaki (2015) on the KS in Step 1–(4)and test 

question and answer Q-matrices in Step 2–

(2) to calculate the probability that 

Participant i chooses answer c for test 

question j( ) according to 

the probability of them guessing or 

mistakenly choosing the incorrect answers. 
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(3) Generate the simulated binary sum answers 

based on the probabilities obtained in Step 

3–(2). 

 

Step 4: 

(1) Use the ideal responses of binary sum 

answers in Step 3–(1) to calculate the ideal 

order coefficient matrices. 

(2) Employ the 100 simulated binary sum 

answers in Step 3–(3) to calculate the 

estimated order coefficient matrices. 

(3) Apply the ideal order coefficient matrices in 

Step 4–(1) as the criterion validity to 

calculate the root-mean-square error (RMSE) 

of the order coefficient matrices. This then 

serves as the judgment criterion to determine 

the effectiveness of OT in comparison to 

OCWOT. 

 

Constructing the test question answer Q-

matrices. This study used the method presented 

in Figure2 to construct the adjacency and 

reachability matrices for the four-part cognitive 

attribute structure depicted in Figure 5; all seven 

attributes were measured, producing 127 

( 27 -1=127 ) possible test questions. 

Subsequently, inefficient test questions (test 

questions that did not conform to the cognitive 

attribute structure) were removed to obtain the 

number of efficient test questions for each 

attribute structure (Table4) and the number of 

test questions for the attributes measured. For 

example, the divergent and linear structure had 

25and 7 efficient test questions, respectively, and 

the numbers of efficient test questions that 

measured three attributes in the divergent 

structure and unstructured part were 5 and 15, 

respectively. The test questions were extracted 

from efficient test questions and had cognitive 

attribute-containing answers as their subsets. 

Therefore, these test questions must conform to 

the original cognitive attribute structure. If the 

number of test questions to be extracted for a 

certain number of measurement attributes was 

greater than the number of efficient test 

questions, extractions were repeated. For 

example, when the number of test questions was 

20, only two efficient test questions measuring 

three attributes were in the convergent structure. 

However, because six test questions were 

required, the two efficient test questions were 

applied three times. By contrast, if the number of 

test questions was less than the number of 

efficient test questions, test questions with 

attributes that were not repeated were randomly 

extracted from efficient test questions. For 

example, the divergent structure contained six 

questions measured four attributes. Because only 

five questions were required in the simulated test 

questions, five questions were randomly selected 

from these six questions. 

This simulation study introduced three different 

test question sets, with the first, second, and third 

question sets containing10, 20, and 30 test 

questions, respectively. The number of attributes 

listed in Table 5 represented the number of 

attributes measured using the correct answers to 

each test question. For example, in the set with 

30test questions, five test questions measured six 

attributes; in the set containing 10test questions, 

one test question measured seven attributes. 

Table 6details the convergent structure of the Q-

matrix with 10 test questions, whereby the first 

answers to all test questions were the correct 

answers.  

 

Table7 presents the convergent structure of the 

Q-matrix with 10 test question answers, with the 

convergent structure used as the subsequent 

structure. 

 

Table4 

Number of Effective Test Questions in the Four-

Part Cognitive Attribute Structure 

Number of 

Attributes 

measured 

Conver

gent 

Diverg

ent 

Line

ar 

Unstruct

ured 

1 1 1 1 1 

2 1 2 1 6 

3 2 5 1 15 

4 1 6 1 20 

5 1 6 1 15 

6 1 4 1 6 

7 1 1 1 1 

Total 8 25 7 64 
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Table5 

Number of Test Questions Required for each 

Attribute Number in the Simulation Study Tests 

Number of 

attributes 
3 4 5 6 7 

Number of 

Test questions 

10 3 2 2 2 1 

20 6 5 4 3 2 

30 8 7 6 5 4 

 

Table 6  

Convergent Structure Q-Matrix With 10 Test 

Questions 

Attribute 

Test question 1 2 3 4 5 6 7 

1 3 2 0 1 0 0 0 

2 3 2 1 0 0 0 0 

3 3 2 0 1 0 0 0 

4 4 3 2 1 0 0 0 

5 4 3 2 1 0 0 0 

6 4 4 3 2 1 0 0 

7 4 4 3 2 1 0 0 

8 4 4 3 4 2 1 0 

9 4 4 4 3 2 1 0 

10 4 4 4 4 3 2 1 

 

Table7 

Convergent Structure Q-Matrix With 10 Test 

Questions Answers 

  Cognitive 

attributes 
  Cognitive 

attributes 

Test 

ques

tion

s 

Ans

wer

s 

1 2 3 4 5 6 7 

Test 

questio

ns 

Ans

wer

s 

1 2 3 4 5 6 7 

1 1 1 1 0 1 0 0 0 6 1 1 1 1 1 1 0 0 

2 1 1 0 0 0 0 0 2 1 1 1 1 0 0 0 

3 1 0 0 0 0 0 0 3 1 1 1 0 0 0 0 

4 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 

2 1 1 1 1 0 0 0 0 7 1 1 1 1 1 1 0 0 

2 1 1 0 0 0 0 0 2 1 1 1 1 0 0 0 

3 1 0 0 0 0 0 0 3 1 1 1 0 0 0 0 

4 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 

3 1 1 1 0 1 0 0 0 8 1 1 1 1 1 1 1 0 

2 1 1 0 0 0 0 0 2 1 1 1 1 1 0 0 

3 1 0 0 0 0 0 0 3 1 1 1 1 0 0 0 

4 0 0 0 0 0 0 0 4 1 1 0 1 0 0 0 

4 1 1 1 1 1 0 0 0 9 1 1 1 1 1 1 1 0 

2 1 1 1 0 0 0 0 2 1 1 1 1 1 0 0 

3 1 1 0 0 0 0 0 3 1 1 1 1 0 0 0 

4 1 0 0 0 0 0 0 4 1 1 1 0 0 0 0 

5 1 1 1 1 1 0 0 0 10 1 1 1 1 1 1 1 1 

2 1 1 1 0 0 0 0 2 1 1 1 1 1 1 0 

3 1 1 0 0 0 0 0 3 1 1 1 1 1 0 0 

4 1 0 0 0 0 0 0 4 1 1 1 1 0 0 0 

 

 Establishing the KS of the test sample. 

To expand the KS to the number of samples 

required for the simulations, this study first 

obtained the ideal responses of each KS. Next, 

the numbers of ideal responses recorded were 

tallied, and the order of the corresponding KS 

was rearranged according to the number of test 

questions answered correctly (which were listed 

in ascending order). The sample sizes were 

organized to form a normal distribution in each 

KS. Subsequently, the KS was repeatedly 

generated according to the size to produce the 

true values of participants’ KS in the simulation 

study. 

Table 8presents the distribution of the 250 test 

samples in each KS in the convergent structure. 

 

 Generating the ideal responses. When 

participants’ KS is identical to the cognitive 

attributes measured using their answers, or when 

the cognitive attributes measured using their 

answers are a subset of their KS, these answers 

constitute ideal responses. If a test that measures 

K attributes has n test questions, and each test 

question has l answers, given that is 

Participantsi’s KS, and that
q
j
(c)

is the Q vector 

of test question j answer c, Participanti’s ideal 

response to test question j. 

 

Table 8 

Frequency Allocation of the 250 samples in the 

Convergent Structure 
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Knowledge 

state 

Ideal 

response 

Numb

er of 

questio

ns 

answer

ed 

correct

ly 

Samp

le 

size 

Perce

ntage 

α1 0000000 00000000 0 1 0.4% 

α2 1000000 10000000 1 13 5.2% 

α3 1100000 11000000 2 41 
16.4

% 

α4 1110000 11100000 3 35 
14.0

% 

α5 1101000 11010000 3 35 
14.0

% 

α6 1111000 11111000 4 70 
28.0

% 

α7 1111100 11111100 5 41 
16.4

% 

α8 1111110 11111110 6 13 5.2% 

α9 1111111 11111111 7 1 0.4% 

 

Table9 

Ideal Responses in the Convergent Structure 

Kn

ow

led

ge 

sta

te 

Tes

t 

que

stio

ns1 

Tes

t 

que

stio

n2 

Tes

t 

que

stio

n3 

Tes

t 

que

stio

n4 

Tes

t 

que

stio

n5 

Tes

t 

que

stio

n6 

Tes

t 

que

stio

n7 

Tes

t 

que

stio

n8 

Tes

t 

que

stio

n9 

Tes

t 

que

stio

n10 

1 4 4 4 4 4 4 4 4 4 4 

2 3 3 3 4 4 4 4 4 4 4 

3 2 2 2 3 3 4 4 4 4 4 

4 1 2 1 3 3 4 4 4 4 4 

5 2 1 2 2 2 3 3 4 4 4 

6 1 1 1 1 1 2 2 3 3 4 

7 1 1 1 1 1 1 1 2 2 3 

8 1 1 1 1 1 1 1 1 1 2 

9 1 1 1 1 1 1 1 1 1 1 

 

Is

h
ij
(c) = a

ik

q
kj

(c)

k=1

K

Õ

( j =1,2,...,n;c =1,2,...,l ).If
h
ij
(c) = 1

, the 

participant has all the attributes required to select 

the correct answers. Conversely, if 
h
nj
(c) = 0

, 

the participant lacks at least one of the attributes 

required to select the correct answers. Because 

the number of attributes measured using the test 

question answers in this simulation study were 

gradually decreased, when participants’ KS 

allowed them to answer multiple questions 

correctly, the answers that measured the most 

attributes were regarded as the participants’ ideal 

responses to test question j(de la Torre, 2009).If 

the participants’ KS did not enable them to 

answer any question correctly, the participants’ 

ideal responses were answers that measured the 

least number of attributes. The convergent 

structure ideal responses are reported in Table9. 

In this study, the correct answers to the test 

questions were always the first answers. 

 

Simulating the participants’ answers and 

binary responses. The MC-S-DINA model 

introduced by Ozaki(2015) calculates the 

probabilities that participants select certain 

answers. Thus, this study employed this model 

to simulate the participants’ answers. The 

percentage of guesses and incorrect answers 

chosen by mistake was set as10%, 20%,30%, 

and 40%, which corresponded to the percentage 

of guesses and incorrect answers chosen by 

mistake in the MC-S-DINA model (i.e., 

d
j1 ,j=1,2,…,20). The percentage of each 

answer being a guess or incorrect answers 

chosen by mistake is calculated as follows: 

d
j1
,d

j2
,d

j3
,d

j4
é
ë

ù
û = [d

j1
,U (d

j1
,0.5),U (0.5,1-d

j1
),1-d

j1
]

 (11) 

Here, U(a, b)is the uniform distribution from a to 

b. Let 
P
ij
(C = c)

be the probability that 

Participant i chooses c as the answer to test 

question j, and r be a uniformly distributed 

random number conforming to U(0,1). When 

r £ P
ij
(C = 1)

, the participant’s answer is 

Answer 1; when 

P
ij
(C =1) < r £ P

ij
(C =1)+ P

ij
(C = 2)

, the 

participant’s answer is Answer 2, and so on. 

Because Answer1 is the correct answer, when 

chosen, the binary response recorded is one. If a 
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different answer is chosen, the binary response 

recorded is zero. 

 

Empirical Data 

This study used empirical data obtained from the 

Eight Intelligences: Mathematical Logic Test 

(Chen, 2011) to perform analyses. Mathematical 

logic intelligence refers to the ability to 

effectively use numerical calculations, perform 

measurements and classifications, and apply 

logic and reasoning to analyze problems, 

complete mathematical operations, and explore 

problems scientifically. The test contained 30 

test questions with four possible answers, and the 

test evaluation content covered four attributes 

(i.e., number, sequence, figurate numbers, and 

real life applications). The test questions, which 

had a reliability coefficient (Cronbach’s α) 

of .930, were administered to104 Grade 6 

students studying in the second semester of the 

2015 to 2016 academic year. 

 

Study Results 

 

Simulation Study Assessment Criteria 

When determining the effectiveness of different 

OT, researchers analyzed the correlation 

coefficients between OT-based and ideal 

response-based test question order structures 

(Liu, 2013; Liu et al., 2015).The higher the 

correlation coefficients are, the closer the 

estimated order structure was to the ideal test 

question order structure. 

OT calculates the order coefficients between two 

test question responses. When the order 

coefficient is greater than the preset threshold, 

the two test questions are regarded as sharing a 

sequential relationship, on the basis of which the 

order structure of all test questions can be 

established. According to their objectives, 

researchers often use different thresholds to 

generate different order structures, rendering a 

comparison across theoretical models applying 

previous methods unsuitable. 

A response set has only one order coefficient 

matrix, and ideal responses represent 

participants’ responses when answers are neither 

guessed nor the incorrect answer mistakenly 

chosen. Therefore, the order coefficient matrix 

calculated using ideal responses is surmised to 

be the optimal order coefficient matrix or the 

“ideal test question order coefficient matrix.” 

Thus, the closer that the estimated test question 

order coefficient matrices calculated using 

simulated responses are to the ideal test question 

order coefficient matrices, the more optimal the 

OT effectiveness. This simulation study 

calculated the order coefficient matrices of ideal 

and simulated responses. OT and OCWOT 

calculated order coefficient matrices using ideal 

binary responses and ideal answers, respectively. 

Next, RMSEs were used to determine OT and 

OCWOT effectiveness. 

 

RMSE =
1

G

1

n2
ĝ
jm

(g ) -g
jm( )

2

m=1

n

åj=1

n

åg=1

G

å
(12) 

Here, G is the number of response groups 

generated when the relevant parameters are fixed 

in a simulation study. In this simulation study,

G =100 , n is the number of test questions in the 

test set, 
g
jm  is the test question order 

coefficients of test questions j and m obtained 

through calculating the ideal responses, and
ĝ
jm

(g )

 

is the test question order coefficient obtained 

through calculating the simulated responses of G. 

Through calculation of the RMSE of the test 

question order coefficient of G and the ideal test 

question order coefficient and application of the 

average value of the two OTs, the effectiveness 

of OT was compared; the smaller the RMSE, the 

more accurate the OT estimation result. 

 

Simulation Study Results 

 

Simulation study results. A four-part cognitive 

attribute structure was established using OT and 

OCWOT. is the lower-level test question (or 

prerequisite test question) of Question1.That is, 

to answer Question 1 correctly, participants must 

answer Question 5 correctly. The rate at which 

lower-level test questions are answered correctly 

is expected to be higher than that of upper-level 

test questions. Figure6 and 7, the structural 

diagrams of the two methods are divided into 
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four levels, with a greater number of lower-level 

test questions generated using OCWOT then 

using OT in the structure. This is attributable to 

OT’s use of binary scoring, whereas OCWOT 

uses polytomous scoring after weighting 

answers. This enables OCWOT to be more 

sensitive than OT in determining upper and 

lower levels after calculating two test question 

order coefficients, resulting in a greater number 

of lower-level test questions in structural 

diagrams created using OCWOT. The overall 

structure subsequently becomes more complete, 

and estimations of participants’ mathematical 

logic-based knowledge structure become more 

reasonable. 

Question 1 and 2 presented in Figure 8 are both 

sequential questions. Question 1 can be 

answered through identifying the patterns of the 

sequence of prime numbers, whereas Question 2 

requires expanding the denominators and then 

identifying the sequence patterns. In OCWOT, 

Question 1 is the lower-level test question of 

Question 2; that is, participants must answer 

Question 1 correctly before they could 

successfully answer Question 2. In terms of the 

test question itself, this thinking order for 

problem-solving is reasonable, but in OT, these 

two questions are regarded as test questions of 

equal status. 

 

 

Table10, 11, and 12 present the RMSEs of the 

four-part cognitive attribute structure with10, 20, 

and 30test questions, respectively. The following 

conclusions were derived: 

(1) An increased sample size increased the order 

coefficient estimation accuracy. 

(2) When the numbers of test questions differed, 

participants more frequently guessing and 

mistakenly choosing incorrect answers 

increased the convergent, divergent, and 

linear RMSEs, thereby decreasing the 

estimation accuracy of both OT and 

OCWOT. However, the unstructured 

RMSEs did not exhibit consistent changes 

(i.e., they either increased or decreased). 

This indicated that unstructured attributes 

were independent of each other, that test 

questions did not have consistent sequential 

relationships, and that answers provided 

limited information. 

(3) Overall, OCWOT proposed in this study 

exhibited the optimal effectiveness. 

 

Empirical data from the experimental results. 

The empirical data involved the analysis of the 

participants’ answers and binary responses using 

OCWOT and OT. The test question structure 

was drawn based on a threshold (ε) of 0.97 to 

compare the differences between the two 

theories. 

The Eight Intelligences: Mathematical Logic 

Test evaluated the test question order structural 

diagrams drawn using OT and OCWOT, as 

depicted in Figure6and Figure7, respectively; 

the numbers in circles denote the test questions, 

and the arrows represent the relationships 

between test questions. For example, as 

illustrated inFigure7,the arrow of Question5 

points to Question1 (i.e., “5→1”), signifying that 

Question5 is the lower-level test question (or 

prerequisite test question) of Question1.That is, 

to answer Question 1 correctly, participants must 

answer Question 5 correctly. The rate at which 

lower-level test questions are answered correctly 

is expected to be higher than that of upper-level 

test questions. Figure6 and 7, the structural 

diagrams of the two methods are divided into 

four levels, with a greater number of lower-level 

test questions generated using OCWOT then 

using OT in the structure. This is attributable to 

OT’s use of binary scoring, whereas OCWOT 

uses polytomous scoring after weighting 

answers. This enables OCWOT to be more 

sensitive than OT in determining upper and 

lower levels after calculating two test question 

order coefficients, resulting in a greater number 

of lower-level test questions in structural 

diagrams created using OCWOT. The overall 

structure subsequently becomes more complete, 

and estimations of participants’ mathematical 

logic-based knowledge structure become more 

reasonable. 

Question 1 and 2 presented in Figure 8 are both 

sequential questions. Question 1 can be 

answered through identifying the patterns of the 
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sequence of prime numbers, whereas Question 2 

requires expanding the denominators and then 

identifying the sequence patterns. In OCWOT, 

Question 1 is the lower-level test question of 

Question 2; that is, participants must answer 

Question 1 correctly before they could 

successfully answer Question 2. In terms of the 

test question itself, this thinking order for 

problem-solving is reasonable, but in OT, these 

two questions are regarded as test questions of 

equal status. 

 

 

Table10 

RMSEs of the Four-Part Cognitive Attribute Structure Calculated Using OT and OCWOT (10Test 

Questions) 

  OT OCWOT 

Cognitive 

attributes 

Percentage of participants choosing 

the wrong answer by 

mistake/making guesses (%) 

Sample size 

50 100 150 200 
100

0 
50 100 150 200 

10

00 

convergent 10 
.10

60 

.09

97 

.10

03 

.09

94 

.09

70 

.02

48 

.02

43 

.02

52 

.02

30 

.02

18 

 20 
.12

59 

.12

29 

.12

02 

.11

89 

.11

71 

.03

21 

.03

16 

.02

93 

.02

84 

.02

69 

 30 
.14

48 

.13

70 

.13

83 

.13

73 

.13

45 

.03

62 

.03

51 

.03

38 

.03

39 

.03

18 

 40 
.15

32 

.14

72 

.14

72 

.14

80 

.14

60 

.04

12 

.03

87 

.03

77 

.03

75 

.03

54 

divergent 10 
.11

26 

.10

81 

.10

58 

.10

54 

.10

38 

.02

40 

.02

50 

.02

23 

.02

13 

.02

04 

 20 
.12

09 

.11

10 

.11

15 

.11

14 

.10

95 

.02

75 

.02

74 

.02

32 

.02

41 

.02

30 

 30 
.12

17 

.11

75 

.11

53 

.11

41 

.11

46 

.03

04 

.03

07 

.02

80 

.02

51 

.02

42 

 40 
.12

26 

.11

61 

.11

41 

.11

68 

.11

40 

.03

28 

.03

06 

.02

80 

.02

87 

.02

69 

linear 10 
.10

28 

.09

85 

.09

86 

.09

64 

.09

59 

.02

61 

.02

48 

.02

34 

.02

31 

.02

28 

 20 
.12

66 

.12

05 

.12

01 

.12

09 

.11

65 

.03

34 

.02

97 

.02

93 

.02

73 

.02

58 

 30 
.14

48 

.13

96 

.13

78 

.13

59 

.13

71 

.03

49 

.03

40 

.03

32 

.03

03 

.03

09 

 40 
.15

22 

.14

74 

.14

73 

.14

85 

.14

60 

.03

79 

.03

61 

.03

60 

.03

52 

.03

41 

unstructured 10 
.12

56 

.11

57 

.11

60 

.11

36 

.11

29 

.02

89 

.02

38 

.02

37 

.02

36 

.02

19 

 20 
.12

48 

.12

09 

.11

72 

.11

66 

.11

50 

.03

06 

.02

87 

.02

76 

.02

60 

.02

46 

 30 
.12

60 

.11

83 

.11

65 

.11

52 

.11

38 

.03

23 

.02

96 

.02

70 

.02

57 

.02

58 

 40 
.12

88 

.11

72 

.11

53 

.11

55 

.11

48 

.03

28 

.02

97 

.02

81 

.02

79 

.02

69 
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Table11 

RMSEs of the Four-Part Cognitive Attribute Structure Calculated Using OT and OCWOT(20 Test 

Questions) 
  OT OCWOT 

Cognitive 

attributes 

Percentage of participants choosing the 

wrong answer by mistake/making 

guesses (%) 

Sample size 

50 100 150 200 
100

0 
50 100 150 200 

100

0 

convergent 10 
.10

93 

.10

62 

.10

46 

.10

36 

.10

07 

.02

72 

.02

64 

.02

50 

.02

43 

.02

27 

 20 
.13

36 

.12

87 

.12

72 

.12

59 

.12

35 

.03

32 

.03

35 

.03

07 

.03

00 

.02

87 

 30 
.15

15 

.14

74 

.14

38 

.14

40 

.14

20 

.03

91 

.03

76 

.03

68 

.03

61 

.03

40 

 40 
.16

60 

.15

87 

.15

67 

.15

59 

.15

52 

.04

39 

.04

09 

.04

06 

.03

87 

.03

84 

divergent 10 
.11

19 

.10

48 

.10

32 

.10

29 

.10

10 

.02

88 

.02

54 

.02

27 

.02

27 

.02

22 

 20 
.11

98 

.11

34 

.11

12 

.11

04 

.10

88 

.03

42 

.02

81 

.02

64 

.02

44 

.02

40 

 30 
.12

34 

.11

92 

.11

64 

.11

57 

.11

48 

.03

39 

.03

20 

.02

89 

.02

85 

.02

66 

 40 
.1 

288 

.12

30 

.12

05 

.12

03 

.11

99 

.03

77 

.03

31 

.02

95 

.03

02 

.02

92 

linear 10 
.10

90 

.10

46 

.10

07 

.10

00 

.09

89 

.02

79 

.02

64 

.02

42 

.02

42 

.02

36 

 20 
.13

33 

.12

84 

.12

75 

.12

50 

.12

38 

.03

35 

.03

13 

.02

98 

.02

88 

.02

90 

 30 
.15

06 

.14

49 

.14

46 

.14

25 

.14

28 

.03

91 

.03

70 

.03

50 

.03

34 

.03

30 

 40 
.16

27 

.15

83 

.15

65 

.15

62 

.15

58 

.04

27 

.04

01 

.03

99 

.03

77 

.03

70 

unstructured 10 
.12

45 

.11

81 

.11

49 

.11

50 

.11

39 

.02

98 

.02

61 

.02

49 

.02

39 

.02

27 

 20 
.12

86 

.12

02 

.12

00 

.11

66 

.11

58 

.03

18 

.02

93 

.02

74 

.02

68 

.02

54 

 30 
.12

66 

.12

05 

.11

76 

.11

50 

.11

57 

.03

30 

.02

92 

.02

92 

.02

75 

.02

70 

 40 
.12

52 

.12

10 

.11

87 

.11

61 

.11

65 

.03

21 

.03

12 

.03

05 

.02

83 

.02

71 

 

Table12 

RMSEs of the Four-Part Cognitive Attribute Structure Calculated Using OT and OCWOT(30Test 

Questions) 
  OT OCWOT 

Cognitive Sample size 
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attributes Percentage of participants 

choosing the wrong answer by 

mistake/making guesses (%) 

50 100 150 200 
100

0 
50 100 150 200 

10

00 

convergent 10 
.11

16 

.10

93 

.10

66 

.10

69 

.10

49 

.02

72 

.02

69 

.02

52 

.02

50 

.02

34 

 20 
.13

63 

.13

16 

.12

99 

.12

74 

.12

58 

.03

44 

.03

26 

.03

15 

.03

07 

.02

89 

 30 
.15

05 

.14

68 

.14

48 

.14

41 

.14

31 

.03

86 

.03

77 

.03

68 

.03

52 

.03

41 

 40 
.16

55 

.15

75 

.15

82 

.15

73 

.15

53 

.04

31 

.04

12 

.04

02 

.04

01 

.03

78 

divergent 10 
.11

41 

.10

92 

.10

61 

.10

57 

.10

57 

.03

10 

.02

78 

.02

47 

.02

35 

.02

42 

 20 
.12

26 

.11

52 

.11

19 

.11

27 

.11

21 

.03

42 

.03

01 

.02

68 

.02

64 

.02

62 

 30 
.12

74 

.11

86 

.11

82 

.11

74 

.11

68 

.03

53 

.03

15 

.03

01 

.03

03 

.02

93 

 40 
.13

10 

.12

48 

.12

12 

.12

09 

.12

04 

.03

72 

.03

47 

.03

12 

.03

22 

.03

07 

linear 10 
.10

86 

.10

50 

.10

26 

.10

27 

.10

21 

.02

82 

.02

67 

.02

52 

.02

49 

.02

47 

 20 
.13

35 

.12

72 

.12

57 

.12

48 

.12

47 

.03

49 

.03

08 

.03

04 

.02

88 

.02

87 

 30 
.15

23 

.14

48 

.14

42 

.14

32 

.14

34 

.03

91 

.03

53 

.03

52 

.03

45 

.03

32 

 40 
.16

07 

.15

86 

.15

65 

.15

58 

.15

52 

.04

21 

.04

09 

.04

00 

.03

78 

.03

77 

unstructured 10 
.12

61 

.12

03 

.11

90 

.11

81 

.11

76 

.03

10 

.02

87 

.02

69 

.02

56 

.02

50 

 20 
.13

12 

.12

17 

.11

99 

.11

98 

.11

93 

.03

25 

.02

97 

.02

90 

.02

69 

.02

70 

 30 
.13

27 

.12

21 

.12

04 

.11

95 

.11

88 

.03

54 

.03

20 

.03

03 

.03

01 

.02

77 

 40 
.12

99 

.12

28 

.12

06 

.11

90 

.11

88 

.03

57 

.03

24 

.03

28 

.03

12 

.02

89 
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Figure6  

Mathematical Logic-Based OT Structure 

 

 
Figure7  

Mathematical Logic-Based OCWOT Structure 

 

1. Which number should be in the parentheses 

based on the pattern of these numbers? 2, 3, 5, 7, 

( ), 13, 17,… ,  

(A) 9 (B) 10 (C) 11 (D) 12 

2. Which number should be in the parentheses 

based on the pattern of these numbers? 1/2, 1/2, 

3/8, ( ), 5/32, 3/32, 7/128, … 

(A) 3/4 (B) 3/8 (C) 1/4 (D) 1/8 

Figure 8 Mathematical Logic-Based Test 

Questions 1 and2 

 

Conclusion and Recommendations 

Multiple-choice questions as a question format 

are advantageous because they can be answered 

quickly and scores can be calculated easily. 

However, because participants only receive 

scores if they select the correct answers, these 

questions do not take the partial knowledge of 

participants into account, unlike diagnostic tests. 

The failure to score such knowledge precludes 

information provided by distractors, resulting in 

the inaccurate determination of participants’ 

knowledge in diagnostic tests. 

As an effective tool for cognitive diagnoses, OT 

is often used in on-site teaching to analyze 

students’ knowledge structure and diagnose their 

learning difficulties and deficiencies, gaining 

information that can be subsequently used as the 

basis on which teachers modify their courses and 

provide remedial education. Tests have evolved 

beyond traditional pen and paper-based tests, 

transitioning to computerized and online tests 

using computerized adaptive testing systems. 

This evolution of test tools allows students to 

provide answers quickly and reduces the time 

teachers spend on marking tests and analyzing 

students’ learning difficulties. OT plays a crucial 

role in computerized adaptive testing systems, 

which use knowledge structure as their basis. OT 

is used to establish the knowledge structure of 

domain experts and references students’ 

responses to construct their knowledge structure 

and identify their learning difficulties. OT has 

been proven effective in various practical 

applications (Chang, Ku, Yu, Wu,& Kuo, 2015; 

Shih et al., 2012; Wu et al., 2012, 2017). 

However, it is only applicable to the response 

data of binary scoring and cannot extract the 



5361  Journal of Positive School Psychology  

 
diagnostic information of distractors in multiple-

choice questions. Accordingly, this study used 

the correlations between answers and correct 

answers, thus proposing OCWOT that extracts 

distractor information. Contrary to other 

methods, the order coefficient matrices of ideal 

responses were used as the criterion validity and 

order coefficient matrices obtained from 

simulated responses were used to calculate 

RMSEs, which were applied to judge the OT 

effectiveness of the two test questions. This 

study investigated OT and OCWOT 

effectiveness through conducting simulation 

research and using empirical data, revealing that 

OCWOT out performed OT in terms of 

effectiveness and estimation accuracy (i.e., 

improvement of 50% to 70%). Therefore, when 

hidden information in answers is taken into 

account, the estimated effectiveness of test 

question order coefficients is enhanced. The 

empirical data system was used to draw test 

question structural diagrams based on a 

threshold (ε)of 0.97, which were used to 

compare the differences between OT and 

OCWOT. The results demonstrated that, 

compared with OT,OCWOT’s use of 

polytomous scoring results in greater sensitivity 

in determining upper and lower levels, thus 

generating a greater number of lower-level test 

questions in structural diagrams compared with 

those generated using OT. This provides a more 

reasonable method with which teachers can 

improve their teaching processes and implement 

remedial education strategies. 

Both OT and OCWOT assess group data and do 

not provide individual diagnosis information. 

Therefore, the efficacy of nonparametric kernel-

smoothing test question OT for individual 

participants is a topic that warrants study (Liu et 

al., 2003; Liu, Wu, Sheu, Chung, &Tsai, 2012). 

Scholars have achieved favorable results in 

combining MC-DINA(de la Torre, 2009) and 

computerized adaptive testing systems (Yigit, 

Sorrel, & de la Torre, 2018).However, the KSAT 

system, which is based on OT, does not account 

for the information provided by distractors. By 

contrast, OCWOT proposed in this study 

integrates distractor information and thus 

outperforms OT. OCWOT could be combined 

with the KSAT system to construct students’ 

cognitive structures to facilitate the development 

of remedial education. 
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