
Journal of Positive Psychology & Wellbeing   http://journalppw.com  
2023, Vol. 7, No. 1, 389-402     ISSN 2587-0130  

 

© 2021 JPPW. All rights reserved 

 

 

 

Linear Fractional Maps That Induce Compact Linear Operators

Zakieldeen Aboabuda Mohammed Alhassn Ali, Sara Mustafa Alshareef Gesmallh, Amna 
Mahmoud Ahmed Bakhit, Manal Yagoub Ahmed Juma, Isra Abdalhleem Hassan Ali, 

Arafa .A.Alrhim Ahmed Dawood

Deanship of the Preparatory Year, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.

Email: Z.alhassan@psau.edu.sa
Correspondents Authors: Zakieldeen Aboabuda Mohammed Alhassn Ali

Z.alhassan@psau.edu.sa

ABSTRACT

It is generally known that the difference of two composition operators formed by linear fractional self-maps

of a ball cannot be nontrivially compactly contained in the Hardy space or any common weighted Bergman

space. This study extends this finding in two important ways: Inducing maps are expanded to linear fractional

maps that carry a ball into a second, and the difference is extended to generic linear combinations, potentially

higher-dimensional space.

Keywords Fractional maps, Composition Operators, Compact Linear Operators.

1. INTRODUCTION 

When m is a non-negative integer, we designate 

�� as the complex m -unit ℂ�space's ball and 

�� as the unit sphere that forms �� border. To 

emphasize the special function played by the case 

where m � 1, we shall substitute the notations �

and � for �� and ��, respectively. This paper's 

main focus is on composition operators generated 

by linear fractional maps that move a ball into a 

possible different-dimensional space. We reserve a 

pair of arbitrary two dimensions, m and n, unless 

otherwise specified. The first function spaces that 

come to mind are the Hardy space and the weighted 

Bergman spaces.

Let the normalized 1 � ℇ weighted volume 

measure ��be denoted by the notation ℇ > �2, 

dv�,�+ℇ

dv�,�+ℇ�z� ∶� c�,�+ℇ�1 � |z|���+ℇdv��z�

where c�,�+ℇ is the chosen constant to ensure that  

v�,�+ℇ���� � 1 and dv� is the normalized 

volume measure on ��. The holomorphic 

functions f on �� Hilbert space ,is then the 

weighted Bergman space A�+ℇ
� ����.

‖f‖�,�+ℇ ∶� �∫ |f�z�|�
 

��

dv�,�+ℇ�z��

� �⁄

has a limit. For the Hardy space H�����, This is 

the Hilbert space of all holomorphic functions f on 

B m when the norm equals 1, we use the idea 

A−�
� ����) when

ℇ � �2.

‖f‖�,−� ∶� � sup
�<�<�

∫ |f�rζ�|�
 

��

dσ��ζ��

� �⁄

has a limitation. The normalized surface area 

measurement on �� is indicated here by the 

symbol dσ�.The weak star convergence 

dv�,�+ℇ → dσ� as ℇ → �2+ justifies the notation 

A−�
� ���� � H�����. A composition operator C�

induced by the holomorphic map Φ ∶ �� → �� is 

defined by

C�f ∶� f ∘ Φ

for holomorphic f on �� functions. To translate 

holomorphic functions on �� to those on ��, C�

is a linear operator. Over the past few decades, 

various elements of these composition operators 
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have been explored; for a summary of the work 

done before the mid-1990s, also the monographs 

by Shapiro [17] and Cowen-MacCluer [3].

Comparing the several-variable theory of 

composition operators to the one-variable theory 

reveals how much more complicated it is, as is 

common knowledge.

For example, Littlewood's Subordination Principle 

has the well-known consequence that, when m �

n � 1, C� is always confined on the Hardy space 

and the weighted Bergman spaces. Such 

boundedness is no longer guaranteed when higher 

dimensional balls are used; for further information, 

see [3, Section 6.3] for the Hardy space and [9] for 

the weighted Bergman spaces. The existence of 

bounded composition operators results from 

holomorphic self-maps of a ball satisfying a 

particular additional property, though.

The so-called Wogen condition is one such 

additional attribute; for further information, see [3, 

Section 6.2] and [19]. Cowen and MacCluer 

discovered linear fractional maps, another kind of 

inducing functions that guarantee boundedness, in 

a quite different setting. In this context, we refer to 

a linear fractional map as one that has the form Φ ∶

 �� → ℂ�, and Φ is holomorphic.

                                                          Φ�z�

�
Az � b

〈z, c〉 � d
                                                       �1�

When the linear operator A ∶ ℂ� → ℂ�, b ∈ ℂ�, 

c ∈ ℂ� and d ∈ ℂ are present. Here, 〈⋅,⋅〉 stands for 

the common inner product on ℂ�, For example, 

〈z, w〉 is equal to 〈z, w〉 � z�w� � ⋯ � z�w� for 

z, w ∈ ℂ� where z� stands for the j-th component of 

z; the context should make it apparent which 

dimension is lacking in this notation.

There is no denying that on the set of z ∈ ℂ� with 

〈z, c〉 � d ≠ 0 extends to a holomorphic function.

When c � 0, Take note that at z � � dc |c|�⁄ , the 

denominator of Φ disappears. As a result, when 

Φ���� ⊂ �� is added, either ||d| > |c| or Φ is 

obtained or reduces to a constant map. Therefore, 

we can assume |d| > |c|in (18) from the beginning 

when Φ���� ⊂ ��. In particular, we observe that 

in an open set containing ��, any linear fractional 

map Φ ∶ �� → �� is holomorphic. When m � n, 

Cowen and MacCluer [4] initially introduced and 

researched linear fractional maps and associated 

composition operators. They showed that 

composition operators generated by linear 

fractional self-maps of a ball are always bounded 

in terms of boundedness on the Hardy space and 

the weighted Bergman spaces (see [4, Theorems 14

and 15]). This turns out to be true for universal 

linear fractional maps from one ball into another, 

provided the weight parameters are coupled 

properly. In order to be more specific, we 

demonstrate (see Theorem (4.2.7)) that whenever 

m � n � ℇ, any linear fractional map Φ ∶ �� →

�� generates a bounded composition operator 

C� ∶ A�+ℇ
� ���� → A�+�ℇ

� ����This justifies the 

parameter connection that is imposed on the 

premises of our main result, Theorem(1.1), below.

In terms of compactness, we note that C� ∶

A�+ℇ
� ���� → A�+�ℇ

� ���� with m � n � ℇ is 

compact if and only if ‖Φ‖�  ∶� sup
�∈��

|Φ�ζ�| � 1.

The requirement is not difficult.

In to show the need, we note that if it is closed and 

bounded, a simple modification of the argument of 

[3, Theorem 3.43] results in (
�−|�����|�

�−�� → ∞ as r →

1−for each ζ ∈ �� and subsequently ‖Φ‖� � 1 by 

smoothness of on Φ on ��.

Research on compact differences, or more 

generally, linear combinations, in the theory of 

composition operators, has recently attracted 

attention. For examples, see [5, 7, 14, 18] for the 

Hardy spaces and [1, 2, 6, 8, 10, 11, 13, 15, 16] for 

the weighted Bergman spaces.

Composition operators generated by linear 

fractional self-maps of a ball are not able to 

construct a nontrivial compact difference, as 

independently shown in [6] and [8]. These 

operators are known to behave quite tightly in this 

circumstance.

We broaden this rigidity in two important 

dimensions. In particular, we broaden the 

definition of difference to include linear 

combination and, concurrently, to include linear 

fractional self-maps of a ball that take a ball into 

another. The following theorem provides a clearer 

explanation of our main discovery.
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Theorem(1.1) Given a non-negative integer N, let 

Φ�, … , Φ� ∶ �� → �� distinctly different linear 

fractional maps and λ�, … , λ� ∈ ℂ. let ℇ ≥ �1 ,

m � n � ℇ, assume that ∑ λ�C��
�
�=� ∶ A�+ℇ

� ���� →

A�+�ℇ
� ���� is closed and bounded. Then, for each

j � 1, … , N, either �Φ��
�

� 1 or λ� � 0.

We demonstrate several fundamental 

characteristics of linear fractional maps that are 

required for the theorem's proof (1.1). We 

demonstrate the theory (1.1). Our strategy differs

significantly from that in [6] and [8]. We also note 

that the parameter relation m � n � ℇ guarantees 

the boundedness of the composition operators 

under discussion (Theorem (3.1)).

2. FRACTIONAL LINEAR MAPS 

We first examine the impact of linear fractional 

maps on horocycle radii. Then, we give a 

uniqueness result for maps of linear fractions that 

contain a ball colliding with another.

let 0 � t � ∞, we denote by ∆� the horodisk 

consisting of all points λ ∈ � satisfying

|1 � λ|� � t�1 � |λ|��.

A simple computation can be used to verify that 

∆�⊂ � is truly a disk with a radius of 
�

�+�
and a 

center at 
�

�+�
. To be more specific, ∆� is tangent to 

� at 1.

As t rises to 1, ∆� also grows and fills the entire �. 

The horocycle that forms the boundary of t is 

denoted by the symbol ∆�. Since Γ� is perpendicular 

to � at 1, one may verify that

                                                            lim
�→�
�∈��

�1 � λ��

|1 � λ|�

� �1.                                                  �2�

We just enter∆�∶� � and �� ∶� � for � � ∞.

Note the Hopf Lemma in the following 

proposition: �′�1� > 0 .

Proposition (2.1):

If ��1� � 1, then if 0 � � � ∞ , � ∶ ∆�→ �

fractional linear map. Then s is specified by the 

equation and ����� � ��.

                                           1 �
1

�

�
1

�′�1�
�1 �

1

�

�
����′′�1��

�′�1�
�                                  �3�.

Proof:

Since � ∶ ∆�→ � is a linear fractional map ��1� �

1, the horocycle ��is transferred onto another 

horocycle. Thus, we just need to determine the 

horocycle's radius, or �����. To accomplish this, 

We parameterize the curve for �����.

���� ∶� �1 � � � �����, �� � � � � where 
�

�
∶�

1 �
�

�
.

Because ����� is a circle passing 1 at � � 0, it is 

sufficient to show that the right-hand side of (3) 

equals the curvature of � at � � 0.

Since

�′�0� � ��′�1��   ���   �′′�0�

� ��′�1� � ���′′�1�.

Since the curve's normal vector is 1 is ��1,0�, we 

can see that the acceleration vector �′′�0� is normal 

component is ��′�1� � ������′′�1��; keep in 

mind that �′�1� > 0.

We have specifically'�′�1� � �����′′�1�� ≥ 0. 

The curvature of at � at � � 0is therefore given by

|����′�0�� × ����′′�0��|

|�′�0�|�
�

�′�1� � �����′′�1��

���′�1���

                                                     

�
1

�′�1�
�

1

�
�

����′′�1��

�′�1�
�.

The evidence is complete since  
�

�
� 1 �

�

�
.

While not necessary for the current paper, we note 

several Proposition (2.1) ramifications that may be 

of interest on their own.
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Remark (2.2):

(1) Given that ��1� � 1, let � be a linear 

fractional self-map. For t = 0, be. By 

Proposition for 0 � � � 1, we have (2.1)

1 � |����|�

1 � |�|�

�
1 � |����|�

|1 � ����|�
⋅ �

1 � ����

1 � �
�

⋅
|1 � �|�

1 � |�|�
                                                      

                �
�

�′�1�� ��1 �
1

�
� �′�1� � �′�1��

� ����′′�1��� �
1 � ����

1 � �
�

�

for � ∈ � ∩ ��. This yields

                    ���
�→�
�∈��

1 � |����|�

1 � |�|�

� �′�1�

� ���′�1� � �′�1��

� ����′′�1���.              �4�

As we wait, we have

���
�→�
�∈��

1 � |����|�

1 � |�|�
≥ ��� ���

�→�

1 � |����|�

1 � |�|�

� �′�1�;

The Julia-Carathéodory Theorem guarantees the 

final equality. This results in the inequality along 

with step (4).

                                                 ����′′�1��

≥ �′�1�� � �′�1�.                                          �5�

From (4) and Proposition (2.1), we can see that the 

equality condition in (5) must be true.

���
�→�
�∈��

1 � |����|�

1 � |�|� � �′�1�  
�������

���
0 � � � ∞

                                     ⟺ ����′′�1��

� �′�1�� � �′�1�

      ⟺ ����� � ��

                                    

⟺ � �� �� ��������ℎ��� �� �.

(2) We also notice that the inequality (5) holds for 

general holomorphic self-maps if and only if 

derivatives up to the second order are 

comprehensible. Take into account any 

holomorphic self-map � of � that admits a 

form expansion and is twice continuously 

differentiable near 1.

���� � 1 � �′�1��� � 1� �
�′′�1�

2
�� � 1��

� ��|� � 1|��

as � → 1within �. Note that the image curve �����

is tangent to � for every 0 � � � 1and that its 

curvature at 1 is at least 1. In light of Proposition 

(2.1)'s proof, we so arrive at

1

�′�1�
�1 �

1

�
�

����′′�1��

�′�1�
� ≥ 1

for every 0 � � � 1. So, if we take the limit � →

∞, we can see that (5) still holds for this generic.

We will now discuss the uniqueness property for 

fractional linear maps that involve one ball being 

rolled into another. Some indication is necessary. 

the remaining portion of the paper, we

�� ∶� �1,0, … ,0� ∈ ��

as an accepted benchmark. The differentiation with 

regard to the �-th component of the supplied 

variable is denoted by ��,and we put

� ∶� ���, … , ���   ���   ��� ∶� ����.

In addition, we write for a holomorphic map � ∶

�� → ��

�′ ∶� ������
�×�

for's complicated derivative �. Throughout, ��

stands for the �-th component function of �.

It is simple to observe how the second-order data 

at a particular place totally dictate a one-variable

fractional linear map. We require such uniqueness 

in a multi-variable form.

Lemma(2.3): Let � ∶ �� → ℂ be fractional linear 

map that is holomorphic at ��. It follows that is 

constant if ������ � 0.
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Proof: Since � ∶ �� → ℂ is fractional linear map, 

there are �, � ∈ ℂ� and �, � ∈ ℂ such that

                                                        ����

�
〈�, �〉 � �

〈�, �〉 � �
.                                                       �6�

We can make the assumption that �� � � ≠ 0; 

otherwise, because � is holomorphic in the vicinity 

of ��, reduces to a constant map. A simple 

computation results in

                                              �����

�
���〈�, �〉 � �����〈�, �〉 � ��

�〈�, �〉 � ���
                                  �7�

that is   

                                          ������

�
����� � �� � ����� � ��

��� � ���
                                      �8�

for every � As a result, if ������ � 0, we get

��� � ���     ���     �� �
�� � �

�� � �
�� � �������

for every � Note that � � ������. As a result, if 

�� ≠ 0, then � � ������. If not, we have �� �

�� � 0 (recall � ≠ 0) and � � ������ again. In 

either scenario, the answer is � � �����.The 

evidence is conclusive. The following lemma's 

characteristics (a) and (b) are true for general 

holomorphic mappings � ∶ �� → � of class �� on

��; see [3, Lemma 6.6]. The following proof of 

proposition (2.5) will make use of property (a). The 

next section's (25) and (26) employ the properties 

(b) and (c), which are empty for � � 1.

Lemma(2.4): Given that ����� � 1, let � ∶ �� →

� be a linear fractional map. Then, the following 

claims are true:

(a) ������� > 0;

(b) ������� � 0 for � � 2, … , �;

(c) �������� � 0 for �, � � 2, … , �.

Proof: Only proof remains (c). Allow � to be as 

in (6). Since

                                                       1 � �����

�
�� � �

�� � �
,                                                    �9�

As of now (8)

                                                       �������

�
�� � ��

�� � �
                                                         �10�

for every � .As a result, by (b)

                                                      �� � ��,   �

� 2, … , �.                                                      �11�

So, by (7), (9) and for � � 2, … , � ,and (11)

                    ������ � ��

〈�, � � �〉 � � � �

�〈�, �〉 � ���

� ����� � ���
�� � 1

�〈�, �〉 � ���
.                �12� 

Applying �� to both sides of the above equation for 

� � 2, … , � and then evaluating at � � �� leads us 

to our conclusion (c). The evidence is conclusive. 

Here is an example of the following uniqueness 

property for linear fractional maps.

Proposition(2.5): If �, � ∶ �� → �� are 

fractional linear maps.

����� � ����� � ��. If

�′���� � �′����     ���     �����������

� �����������,

Then

� � �.

Proof: First, we prove �� � ��. Let � ∶� �� and 

� ∶� �� for short. Choose �, �′, �, �′ ∈ ℂ� and 

�, �′, �, �′ ∈ ℂ such that

���� �
〈�, �〉 � �

〈�, �〉 � �
     ���     ���� �

〈�, �′〉 � �′

〈�, �′〉 � �′
.

Let ���
and ���

be the slice functions provided by

���
��� ∶� �����

� �
��� � �

��� � �
     ���     ���

��� ∶

� �����
� �

��
′
� � �′

��
′
� � �′
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for � ∈ �. As a result, ���
and ���

) are linear 

fractional self-maps of �, and

���
�1� � ����� � ����� � ���

�1�,

        ���

′ �1� � ������� � ������� � ���

′ �1�,

          ���
′′ �1� � �������� � �������� � ���

′′ �1�.

Because a linear fractional self-map of � at a 

particular point is completely governed by its 

second-order data, this means that ���
� ���

. 

Consequently, we may assume scaling coefficients 

as necessary.

                                     �� � ��
′ ,   � � �′,   ��

� ��
′    ���   �

� �′.                                  �13�

Assuming that ����� � ����� � 1, we also 

obtain by (11)

�� � ��      ���     ��
′ � ��

′,   � � 2, … , �.

Now, it is sufficient to demonstrate that � � �.

                                                         �� � ��
′,   �

� 2, … , �                                                     �14�

Fix an arbitrary � � 2, … , � for the remainder of the 

proof to demonstrate this. By using �� to apply to 

(12) and evaluating at z = ��, we get

For the remainder of the proof, fix an arbitrary � �

2, … , �. By adding �� to (12) and evaluating at z = 

��, we obtain.

�������� � �������� �
��� � ���

��� � ���
��.

In a similar vein, we

������� �
���

′
� ��

′
�

���
′

� �′′�
��

′
�

��� � ���

��� � ���
��

′
,

The final equality originates from (13). According 

to the presumption

�������� � �������� that ��� � ������ � ��
′� �

0. As a result, we arrive at (14) as needed �� ≠ ��

by Lemma (2.4), (a), and (10). We can now see that 

� and � and share a same denominator since �� �

��. So, Additionally, � � � ∶ �� → ℂ� is a linear 

fractional map that is holomorphic in the vicinity 

of ��.

We arrive at the conclusion � � � by lemma 

given that �′���� � �′���� and ����� � �����, 

respectively (2.3). The evidence is overwhelming.

3. OPERATORS OF COMPOSITIONS 

Theorem (1.1) assumes that each of the 

composition operators under examination is 

individually bounded, thus to start, we demonstrate 

that the parameter connection in this statement is a 

natural one.

Theorem(3.1): If � ∶ �� → ��be a fractional 

linear map. Then

�� ∶ ��+ℇ
� ���� → ��+�ℇ

� ����

is constrained whenever � � � � ℇand ℇ≥ �1.

Proof: As stated in the Introduction, [4, Theorems 

14 and 15] show the � � �. So let's say � ≠ �. 

Replace ℇ ≥ �1 with � � � � ℇ.

We first look at the situation � > �. Let ��,� ∶

�� → �� , ��,����, … , ��� ∶� ���, … , ���be the 

projection map. The famous integral identities 

come to mind when combined with this projection 

map.

∫ ℎ���
 

��

���,�+�ℇ���

� ∫ ℎ
 

��

∘ ��,���� ���,�+ℇ���   ��� ℇ

> �2

and

∫ ℎ���
 

��

���,�+�ℇ���

� ∫ ℎ ∘ ��,����
 

��

������   ��� ℇ

� �2

regarding the functions ℎ ∈ ������,�+�ℇ�.A 

simple application of Fubini's Theorem can be used 

to verify the case ℇ > �2, the situation ℇ �

�2 can is, for example, found in [19, Lemma 1.9]. 

These core identities serve as evidence for us that
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�����,���
�,�+ℇ

� �� ∘ � ∘ ��,��
�,�+ℇ

� ‖� ∘ �‖�,�+�ℇ � ‖���‖�,�+�ℇ

� ∈ ��+ℇ
� ���� and ℇ ≥ �2for any. Because � ∘

��,� is a linear fractional self-map of ��, ��∘��,�
∶

��+ℇ
� ���� → ��+ℇ

� ���� is also bounded.

In light of the foregoing, we deduce that �� ∶

��+ℇ
� ���� → ��+ℇ

� ����) is bounded as necessary.

We will now look at case � � �. In this instance, 

we employ the well-known Carleson measure 

method; for more information on Carleson 

measures, see, for instance, [3, Section 2.2]. We 

offer information for the case ℇ > �1; using [168, 

Theorem 2.38], the case ℇ � �1can be handled 

identically. Note

∫ |� ∘ �|�
 

��

���,�+�ℇ���

� ∫ |�|�
 

��

����,�+�ℇ ∘ �−��   �

∈ ��+ℇ
� ����

where the pullback measure is supplied by 

��,�+�ℇ ∘ �−�.

���,�+�ℇ ∘ �−����� ∶� ��,�+�ℇ��−����� for

Borel sets � ⊂ ��. This shows (see [3, Theorem 

2.38]) that �� ∶ ��+ℇ
� ���� → ��+ℇ

� ���� is

bounded if and only if ��,�+�ℇ ∘ �−� is a Carleson 

measure for ��+ℇ
� ����, which means

  ���
�∈��

���,�+�ℇ ∘ �−�����
����� � ����+�+ℇ�,   �

> 0                                      �15�

where

��
���� : � �� ∈ �� ∶ |1 � 〈�, �〉 � ��.

We now show (15). For that purpose, we consider 

the embedding map

��,� ∶ �� → �� given by ��,���� ∶�

��, 0, … ,0�. This time �� ∶� ��,� is a linear 

fractional self-map of �� and thus ��� ∶

��+�ℇ
� ���� → ��+�ℇ

� ���� is bounded, or 

equivalently, the pullback measure ��,�+�ℇ ∘ ��−�

is a Carleson measure for ��+�ℇ
� ����. More 

explicitly, we have

���
�∈��

���,�+�ℇ ∘ ��−�����
����� � ����+�+�ℇ�,   �

> 0.                                             �16�

Meanwhile, note

                                                      ��−����
���̃��

� ��−����
�����                                        �17�

for � ∈ �� and �̃ ∶� ��, 0, … ,0� ∈ ��. Now, since 

� � � � ℇ, we see that (16) and (17) imply (15). 

The proof is strong. Now, let's move on to the 

theorem's proof (1.1). We require multiple 

introductions. We start by remembering the 

reproducing kernels for the spaces in question. Let 

ℇ ≥ �2. Every � ∈ ��corresponds to a different 

replicating kernel, as is widely known.

��
�,�+ℇ ∈ ��+ℇ

� ���� such that

���� � 〈�, ��
�,�+ℇ〉���ℇ

� ����,   � ∈ ��+ℇ
� ����

where the inner product on 〈⋅,⋅〉���ℇ
� ���� is 

indicated by, ��+ℇ
� ����. ��

�,�+ℇ formula is well-

known and is provided by

 ��,�+ℇ��, �� ∶� ��
�,�+ℇ��, ��

�
1

�1 � 〈�, �〉��+�+ℇ
;                                    �18�

see, for example, [19]. Note

    ���
�,�+ℇ�

�,�+ℇ

�
� ��,�+ℇ ��, ��

�
1

�1 � |�|�� �+�+ℇ
.                                �19�

The following positive of the replicating kernels is 

presumably well known. Here, we offer a rather 

simple proof of completeness.

Lemma(3.2): Let ℇ ≥ �2, a non-Negative integer 

�, let ��, … , �� be distinct points in ��. Then

� ������,�+ℇ���, ���

�

�,�=�

≥ 0

for any choice of ��, … , �� ∈ ℂ. Additionally, the 

equality only applies when
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�� � ⋯ � �� � 0.

Proof: The reproducing property suggests that

��,�+ℇ��, �� � 〈��
�,�+ℇ, ��

�,�+ℇ〉���ℇ
� ����

for all �, � ∈ ��. Thus, we have

� ������,�+ℇ���, ���

�

�,�=�

� � 〈���
��
�,�+ℇ, ���

��
�,�+ℇ〉���ℇ

� ����

�

�,�=�

                                                

� 〈� ���
��
�,�+ℇ

�

�=�

, � ���
��
�,�+ℇ

�

�=�

〉���ℇ
� ����

                      � �� ���
��
�,�+ℇ

�

�=�

�

�,�+ℇ

�

 

for any selection of ��, … , �� ∈ ℂ. The first portion 

of the lemma is proven by this. Since the points 

��, … , �� are all distinct, it should be noted that 

{�
��
�,�+ℇ, … , �

��
�,�+ℇ} are linearly independent. 

Consequently, the lemma's second portion is also 

true.

We now prove the following lemma, which is 

essential to our later arguments, using Lemma 

(3.2). We employ the standard multi-index notation 

both in the proof that follows and elsewhere. This 

is,

|�| ∶� ��  � ⋯ � ��,

�! ∶� ��! … ��!,      

�� ∶� ��
�� … ��

��           

For � � ���, … , ��� and � -tuples � �

���, … , ��� Among integers, non-negative; 

These notations should make it clear from the 

context which dimensions are involved. Naturally, 

it is expected that 1 represents 0�.

Lemma(3.3): A von-negative integer is given�, 

let ���, ���, … , ���, ��� be distinct points in

ℂ × ℂ�. If ��, … , �� complicated numbers in such 

a form

                                               � ������� � ��

�

�,�=�

� 〈��, ��〉�
�

� 0                                  �20�

for all integers � ≥ 0, then �� � ⋯  � �� � 0.

be complex numbers that satisfy (20) for all � ≥

0integers.

Proof: Let ��, … , �� be complex numbers that 

satisfy (20) for all � ≥ 0 integers. First, we say

                                                               � ����
�

��
�

�

�=�

� 0                                                       �21�

for every single integer � ≥ 0and several indices.

By the instance � � 0 of (21) it is clear that it holds 

for � � 0 and |�| � 0. (20). The next step is to 

induct on 2� � |�|. Therefore, let's assume that 

(38) is true whenever 2� � |�| � � � 1 for an 

integer � ≥ 1. Take note of (20) that

0 � � ���� ��� � �� � ���, ����
�

�

�,�=�

               

� �
�!

�! �! �!
�+�+�=�

� ������
�

��
�〈��, ��〉�

�

�,�=�

          � �
�!

�! �!
�+�+�=�

�
1

�!
������

�
��

�
��

�
��

�

|�|=�

                                           

� �
�!

�! �!
�+�+�=�

�
1

�!
|�|=�

�� ������
�

��
�

�

�=�

� �� ����
�

��
�

�

�=�

�.

We have 2� � � � � or 2� � � � � for � and �

with � � � � � � � and � ≠ �. Thus, the terms in 

the aforementioned sum disappear whenever the 

induction hypothesis holds true. Consequently, we 

have

0 � �
�!

�! �!
��+�=�

�
1

�!
�� ����

�
��

�

�

�=�

�

�

|�|=�

.
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In order to complete the induction, we therefore 

infer that (38) is true when 2� � |�| � �.

Set �� ∶� ������. now. We can assume that all the 

points��, … , �� belong to ��+�. by scaling, if 

necessary. Then, we have by (38)

0 � � ������
�

�

�=�

for every multi-index � The justification provided 

demonstrates that this amounts to

0 � � ����〈��, ��〉�

�

�,�=�

� ≥ 0 for all integers. This suggests, together with 

(18),

0 � � ������+�+ℇ���, ���

�

�,�=�

ℇ ≥ �2,for any. In light of Lemma (3.2), we can 

deduce that �� � ⋯ � �� � 0as stated, is the case. 

The evidence is conclusive.

Corollary(3.4): Let a non-negative integer �, let 

���, ���, … , ���, ��� be distinct points in ℂ × ℂ�. 

Let � > 0 and ��, … , �� ∈ ℂ. If

                                           �
����

[1 � ���� � ��
〈��, ��〉�]

�

�

�=�

� 0                                       �22�

if all � ∈ ℂ are found close to the origin, then �� �

⋯ � �� � 0.

Proof: The sum on the left side of (22) is a 

holomorphic function of � near the origin. 

Therefore, the origin should be the point at which 

all Taylor coefficients vanish. It then follows

� ������� � ��
〈��, ��〉�

�
�

�,�=�

� 0

� ≥ 0 for all integers. Thus, the corollary by 

Lemma is concluded (3.3).

We add new notation in this sentence. Let

��
���

∶� �� ∈ �� ∶ �� � 0�.

Note that the slice in �� traveling through �� and 

� for � ∈ ��
���

is exactly the horodisk ∆|�|��, that 

is,

∆|�|��� �� ∈ � ∶ ��� � �1 � ��� ∈ ���.

We write �� for the slice function denoted by 

given � ∈ ��
���

and fractional linear map � ∶

�� → �.

����� ∶� ����� � �1 � ����,   � ∈ ∆|�|��;

note �� � � when � � 1, because � � 0. Note 

that �� is holomorphic in a neighborhood of 1. 

Setting

                                       ����� ∶

� �������

� � ���������

�

�=�

                                       �23�

and

����� ∶� �
�������

�!
��1�����

�� … ��
��

|�|=�

,

one may check that

             ����� � ����� � ������� � 1�

� ������� � 1��

� ��|� � 1|��          �24�

as � → 1 (uniformly in �).

When ����� � 1 in addition, note from 

Lemma (2.4) that ����� and ����� reduce to

                                                          �����

� �������                                                      �25�

and

                                        �����

�
1

2
��������

� � ����������

�

�=�

.                               �26�
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When � � 1, the summations in (23) and (26) 

should be regarded as meaningless.

For a linear fractional map � ∶ �� → �� and � ∈

��
���

, we use the notation

               �� ∶� ���,�, … , ��,��   ���   ����� ∶

� ����
���, … , ���

����           �27�

Remember that the �-th component function of is 

denoted by the symbol

��,� ∶� ����
�

. The following lemma is entered:

��,���, �� ∶� �1 �
1

�
� �������� � ���

���

� ���
��� � 〈�����, �����〉

for brevity.

Lemma(3.5): suppose that they are linear 

fractional maps �, � ∶ �� → �� ,

����� � ��. Then the equality

���
�→�
�∈��

1 � 〈�����, �����〉

|1 � �|�

� �
��,���, ��

�� ����� � ����� ���

�������� � ��������

∞ ��ℎ������

 

holds for � ∈ ��
���

and 0 � � � 1 |�|�⁄ .

Proof: Let � ∈ ��
���

and fix t such that 0 � � �

1 |�|�⁄ . Let � � �� and  � ∶� �� for simplicity. 

Note

1 � 〈�����, �����〉

|1 � �|�

�
1 � |�����|�

|1 � �|�

�
����� ������ � ������

|1 � �|�

� �
��,������,����

|1 � �|�

�

�=�

 �28�

The boundaries of the three terms in the above 

right-hand side will be calculated separately. First, 

we determine the upper bound of the first term in 

the right-hand (28). Keep in mind that �� ∶

∆|�|��→ � is a fractional linear map when 

���1� � 1. As a result, according to Proposition 

(2.1), (24) and (25)

1 � |�����|�

|1 � �����|�
�

1

��
′ �1�

�1 �
1

�
�

�� ���
′′�1��

��
′ �1�

�

� 1

                                  

�
1

�������
�1 �

1

�

� 2
�� [�����]

�������
� � 1

for � ∈ ��, � ≠ 1. Note ������� > 0 by Lemma 

(2.4) (a). It follows that

���
�→�
�∈��

|1 � �����|�

|1 � �|�

� ���
�→�
�∈��

|1 � �����|�

|1 � �����|�

⋅
|1 � �����|�

|1 � �|�
                                                        

                                   

� �1 �
1

�
� �������

� 2��[�����]

� ����������.                    �29�

Next, We determine the last term's limit in the 

right-hand side of (45).Since ��, 2 � � � �, is 

holomorphic in a neighborhood of 1 and ������ �

0, we have by (24)

��,���� � ���
����� � 1� � ��|� � 1|��.

The same holds for ��. It follows that

                                             ���
�→�
�∈��

��,������,����

|1 � �|�

� ���
������

���                              �30�

for each � � 2, … , �.

Finally, we determine the upper bound for the 

second term in the right-hand (28). If ����� ≠

�����, then it is evident that the limit being 
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considered is ∞. So, assume �����  � ����� �

��. We have by (24) and (25)

����� � �����

� �������� � ���������� � 1�

� [����� � �����]�� � 1��

� ��|�

� 1|��                                                                                                 �31�

as � → 1. Thus we see that

���
�→�
�∈��

|����� � �����|

|1 � �|�
� ∞     �� �������

≠ �������.

The second portion of the lemma is proven by this. 

As opposed to that, if ������� � �������, then

we obtain by (2) and (31)

                                  ���
�→�
�∈��

����� ������ � ������

|1 � �|�

� �����

� �����.                     �32�

Also, note from (24)

���������� � ������� ⋅ �������

� ����������.

Thus, by (29), (30), and we infer the first part of the 

lemma (32). The evidence is conclusive. For a 

linear fractional map � ∶ �� → ��, recall that ��

denotes the map defined in (27).

Lemma(3.6): let a non-negative integer �, let 

��, … , �� ∶ �� → �� be distinct linear fractional 

maps such that

             ������ � ⋯ � ������

� ��   ���   ����
����� � ⋯

� ����
�����.          �33�

Then, the following claims are true:

(a) When � � 1, the vectors

��
��

��0�, ����0�� ∈ ℂ × ℂ�,   � � 1, … , �

are all distinct;

(b) When � ≥ 2, the vectors

��
��

����, ������� ∈ ℂ × ℂ�,   � � 1, … , �

are all distinct for almost every � ∈ ��
���

. 

The (n-1)-dimensional volume measure on 

� ∈ ��
���

≅ ��−� is what is meant by "nearly 

every" in this context �� � 1�.

Proof: From Proposition, Assertion (a) 

immediately follows (2.5). So, for the remainder of 

the proof, assume � ≥ 2. Let � ∈ ��
���

. Since we 

have (33) by assumption, we note from (25) that

�
��

���� � ����
����� are all the same. So, by (26), 

we only need to consider the vectors

����� ∶

� �
1

2
����

�����

� � ��,���
�������, �

��
����, … , �

��
� ���

�

�=�

�

for � � 1, … , �. For each �, setting

�� ∶� �
�����

�

2
, ����

�
, … , ����

�
�

and

�� ∶�

(

�
�

�����
�

⋯ �����
�

����
�

⋯ ����
�

⋮

����
�

⋮
⋯

⋮

����
�

)

�
�

�×��−��

,

note

����� � �������′ � ������

where �′ ∶� ���, … , ��� and the matrix ������ is 

regarded as a linear operator from ℂ�−� to ℂ�.

Since ��, … , �� are distinct maps satisfying (33)

by assumption, note from Proposition (2.5) that

���ℎ�� ������ ≠ ������     ��      ������

≠ ������

whenever � ≠ �. Thus, if ������ � ������ and 

� ≠ �, then we see
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����� � ����� � ������ � ������ ≠ 0

for all �. So, for simplicity, we may assume 

������ ≠ ������ whenever � ≠ �. Given � � �, 

let ��� be the set of all � ∈ ℂ�−� such that

[������ � ������] � ������ � ������.

Note that ��� lies in a hyperspace of ℂ�−�, because 

the kernel of

������ � ������ ≠ 0 cannot be of full 

dimension. In particular, the set

� ∶� ⋃ ���

�≤�<�≤�

,

is a part of the measure 0 subset of ℂ�−�. We get 

the lemma's conclusion because �����, … , �����

are all distinct if and only if �′ ∉ �. The evidence 

is conclusive.

We are now prepared to demonstrate our key 

finding. Thesis (1.1). We shall make advantage of 

the fact that a bounded linear operator is closed and 

bounded if and only if its adjoint is closed and 

bounded when it leaves one Hilbert space and 

enters another. Along with this observation, we 

make note of a straightforward but crucial fact 

regarding adjoints of composition operators. When 

�� ∶ ��+ℇ
� ���� → ��+ℇ

� ���� is bounded, its 

adjoint ��
∗ ∶ ��+�ℇ

� ���� → ��+ℇ
� ���� takes the 

practice of reproducing kernels to a level where

                            ��
∗ ��

�,�+�ℇ

� �����
�,�+ℇ,                                                           �34�

which the replicating property readily verifies.

For convenience, we repeat Theorem (1.1) in the 

manner that follows.

Theorem (3.7) Given a positive integer �, let 

��, … , �� ∶ �� → �� be distinct linear fractional 

maps such that ����
�

� 1 for � � 1, … , �. For

ℇ ≥ �1 with

� � � � ℇ and ��, … , �� ∈ ℂ, assume that

∑ ��� ��
�
�=�  ∶ ��+�ℇ

� ���� → ��+ℇ
� ���� is 

compact. Then �� � ⋯ � �� � 0.

Proof: First, we show

         ���
|�|→��

� ���� �
1 � |�|�

1 � 〈�����, �����〉
�

�+�+�ℇ�

�,�=�

� 0.                          �35�

Put � ∶� ∑ �����
�
�=� for short. Since � ∶

��+ℇ
� ���� → ��+�ℇ

� ���� is compact by 

assumption, its adjoint � � ∑ ���
��
∗�

�=� ∶

��+�ℇ
� ���� → ��+ℇ

� ���� is also compact. Note 

from (18) and (19) that, as |�| → 1−, the 

normalized kernel ��
�,�+�ℇ ���

�,�+�ℇ�
�,�+�ℇ

�

converges to 0 uniformly on closed and bounded

sets in ��, or equivalently, converges to 0 weakly 

in ��+�ℇ
� ����. It follows that since a compact 

operator maps a weakly convergent sequence onto 

a norm convergent one.

        �∗ �
��

�,�+�ℇ

���
�,�+�ℇ�

�,�+�ℇ

�

→ 0   ��   ��+ℇ
� ����                                           �36�

as |�| → 1−. Meanwhile, for � ∈ ��, we have by 

(34)

��∗��
�,�+�ℇ�

�,�+ℇ

� � ����〈�
��
∗ ��

�,�+�ℇ, �
��
∗ ��

�,�+�ℇ〉���ℇ
� ����

�

�,�=�

                  � � ���� 〈�
�����
�,�+ℇ, �

�����
�,�+ℇ〉���ℇ

� ����

�

�,�=�

   � � �����
�����
�,�+ℇ �������

�

�,�=�

so that

 ��∗
��

�,�+�ℇ

���
�,�+�ℇ�

�,�+�ℇ

�

�,�+ℇ

�

� � ���� �
1 � |�|�

1 � 〈�����, �����〉
�

�+�+�ℇ�

�,�=�

           �37�

For this equality, we used (18), (19), and the 

relationship � � � � ℇ. Therefore, we have (35) 

by (36) and (37).
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We now demonstrate _�� � 0, and one may 

demonstrate �� � ⋯ � �� � 0 . by the exact same 

justification. Since it is assumed that ‖��‖� � 1, 

there are some � ∈ �� and � ∈ �� such that 

����� � �. After unitary variable changes, we can 

infer that � � �� and � � ��, resulting in 

������ � ��. �, the index set provided by

� ∶� {� ∶ ������ � ������   ��� ����
�����

� ����
�����}.

Using Lemma (3.6), pick � ∈ ��
���

such that

         ��
��

����, �������

≠ ����
����, �������    ���   �, �

∈ �   ���ℎ   � ≠ �.     �38�

Let 0 � � � 1 |�|�⁄ . Applying (35) along the 

curve �� ≔ ���
� �1 � ��� for � ∈ �� and then 

using 1 � |��|� � �1 �⁄ � |�|��|1 � �|�, we 

obtain

0 � ���
�→�
�∈��

� ���� �
|1 � λ|�

1 � 〈Φ�
�

�λ�, Φ�
� �λ�〉

�

�+�+�ℇ�

�,�=�

� lim
�→�
�∈��

�� �

�,�∈�

�  

�,�∉�

�

where the source of the second equality is Lemma 

(3.5). Additionally, each term in the brace of the 

previous statement is rendered nonnegative by (37) 

and disappears. Lemma (3.5) again suggests that

0 � lim
�→�
�∈��

� λ�λ� �
|1 � λ|�

1 � 〈Φ�
� �λ�, Φ�

� �λ�〉
�

�+�+�ℇ

�,�∈�

   � � λ�λ� �lim
�→�
�∈��

|1 � λ|�

1 � 〈Φ�
�

�λ�, Φ�
� �λ�〉

�

�+�+�ℇ

�,�∈�

� �
λ�λ�

[L��,���t, w�]
�+�+�ℇ

�,�∈�

.                                 

Note_δ ∶� ∂�Φ�
����� > 0 by Lemma (2.4) (a). So, 

multiplying both sides of the above by

�
�

�
�

−��+�+�ℇ�

,We succeed

�
λ�λ�

�
t
δ

L��,���t, w��
�+�+�ℇ

�,�∈�

� 0.

For any j, k ∈ J, Observe that the purpose

t ⟼
t

δ
L��,���t, w�   �w ∶ fixed�

� 1

� t �
〈G���w�, G���w�〉 � H

��
� �w� � H��

��w�

δ

� 1�

extends unquestionably to a holomorphic function 

in the area around the origin. Thus, from (38) and 

Corollary (3.4), we deduce that λ� � 0 for all j ∈ J. 

In particular, we reach the necessary conclusion 

that λ� � 0. The evidence is conclusive.
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